Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
MMWR Morb Mortal Wkly Rep ; 72(14): 372-376, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37022984

RESUMO

Improving ventilation has been one of several COVID-19 prevention strategies implemented by kindergarten through grade 12 (K-12) schools to stay open for safe in-person learning. Because transmission of SARS-CoV-2 occurs through inhalation of infectious viral particles, it is important to reduce the concentration of and exposure time to infectious aerosols (1-3). CDC examined reported ventilation improvement strategies among U.S. K-12 public school districts using telephone survey data collected during August-December 2022. Maintaining continuous airflow through school buildings during active hours was the most frequently reported strategy by school districts (50.7%); 33.9% of school districts reported replacement or upgrade of heating, ventilation, and air conditioning (HVAC) systems; 28.0% reported installation or use of in-room air cleaners with high-efficiency particulate air (HEPA) filters; and 8.2% reported installation of ultraviolet (UV) germicidal irradiation (UVGI) devices, which use UV light to kill airborne pathogens, including bacteria and viruses. School districts in National Center for Education Statistics (NCES) city locales, the West U.S. Census Bureau region, and those designated by U.S. Census Bureau Small Area Income Poverty Estimates (SAIPE) as high-poverty districts reported the highest percentages of HVAC system upgrades and HEPA-filtered in-room air cleaner use, although 28%-60% of all responses were unknown or missing. Federal funding remains available to school districts to support ventilation improvements. Public health departments can encourage K-12 school officials to use available funding to improve ventilation and help reduce transmission of respiratory diseases in K-12 settings.


Assuntos
Poluição do Ar em Ambientes Fechados , COVID-19 , Humanos , Estados Unidos/epidemiologia , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Ventilação , Ar Condicionado , Instituições Acadêmicas , Poluição do Ar em Ambientes Fechados/prevenção & controle
2.
Build Environ ; 229: 109920, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36569517

RESUMO

Many respiratory diseases, including COVID-19, can be spread by aerosols expelled by infected people when they cough, talk, sing, or exhale. Exposure to these aerosols indoors can be reduced by portable air filtration units (air cleaners). Homemade or Do-It-Yourself (DIY) air filtration units are a popular alternative to commercially produced devices, but performance data is limited. Our study used a speaker-audience model to examine the efficacy of two popular types of DIY air filtration units, the Corsi-Rosenthal cube and a modified Ford air filtration unit, in reducing exposure to simulated respiratory aerosols within a mock classroom. Experiments were conducted using four breathing simulators at different locations in the room, one acting as the respiratory aerosol source and three as recipients. Optical particle spectrometers monitored simulated respiratory aerosol particles (0.3-3 µm) as they dispersed throughout the room. Using two DIY cubes (in the front and back of the room) increased the air change rate as much as 12.4 over room ventilation, depending on filter thickness and fan airflow. Using multiple linear regression, each unit increase of air change reduced exposure by 10%. Increasing the number of filters, filter thickness, and fan airflow significantly enhanced the air change rate, which resulted in exposure reductions of up to 73%. Our results show DIY air filtration units can be an effective means of reducing aerosol exposure. However, they also show performance of DIY units can vary considerably depending upon their design, construction, and positioning, and users should be mindful of these limitations.

3.
Artigo em Inglês | MEDLINE | ID: mdl-35982992

RESUMO

Fused filament fabrication three-dimensional (FFF 3-D) printing is thought to be environmentally sustainable; however, significant amounts of waste can be generated from this technology. One way to improve its sustainability is via distributed recycling of plastics in homes, schools, and libraries to create feedstock filament for printing. Risks from exposures incurred during recycling and reuse of plastics has not been incorporated into life cycle assessments. This study characterized contaminant releases from virgin (unextruded) and recycled plastics from filament production through FFF 3-D printing. Waste polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) plastics were recycled to create filament; virgin PLA, ABS, high and low density polyethylenes, high impact polystyrene, and polypropylene pellets were also extruded into filament. The release of particles and chemicals into school classrooms was evaluated using standard industrial hygiene methodologies. All tasks released particles that contained hazardous metals (e.g., manganese) and with size capable of depositing in the gas exchange region of the lung, i.e., granulation of waste PLA and ABS (667 to 714 nm) and filament making (608 to 711 nm) and FFF 3-D printing (616 to 731 nm) with waste and virgin plastics. All tasks released vapors, including respiratory irritants and potential carcinogens (benzene and formaldehyde), mucus membrane irritants (acetone, xylenes, ethylbenzene, and methyl methacrylate), and asthmagens (styrene, multiple carbonyl compounds). These data are useful for incorporating risks of exposure to hazardous contaminants in future life cycle evaluations to demonstrate the sustainability and circular economy potential of FFF 3-D printing in distributed spaces.

4.
Front Public Health ; 10: 750289, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664098

RESUMO

Exposure to elevated levels of diacetyl in flavoring and microwave popcorn production has been associated with respiratory impairment among workers including from a severe lung disease known as obliterative bronchiolitis. Laboratory studies demonstrate damage to the respiratory tract in rodents exposed to either diacetyl or the related alpha-diketone 2,3-pentanedione. Respiratory tract damage includes the development of obliterative bronchiolitis-like changes in the lungs of rats repeatedly inhaling either diacetyl or 2,3-pentanedione. In one flavored coffee processing facility, current workers who spent time in higher diacetyl and 2,3-pentanedione areas had lower lung function values, while five former flavoring room workers were diagnosed with obliterative bronchiolitis. In that and other coffee roasting and packaging facilities, grinding roasted coffee beans has been identified as contributing to elevated levels of diacetyl and 2,3-pentanedione. To reduce worker exposures, employers can take various actions to control exposures according to the hierarchy of controls. Because elimination or substitution is not applicable to coffee production facilities not using flavorings, use of engineering controls to control exposures at their source is especially important. This work demonstrates the use of temporary ventilated enclosures around grinding equipment in a single coffee roasting and packaging facility to mitigate diacetyl and 2,3-pentanedione emissions from grinding equipment to the main production space. Concentrations of diacetyl and 2,3-pentanedione were measured in various locations throughout the main production space as well as inside and outside of ventilated enclosures to evaluate the effect of the enclosures on exposures. Diacetyl and 2,3-pentanedione concentrations outside one grinder enclosure decreased by 95 and 92%, respectively, despite ground coffee production increasing by 12%, after the enclosure was installed. Outside a second enclosure, diacetyl and 2,3-pentanedione concentrations both decreased 84%, greater than the 33% decrease in ground coffee production after installation. Temporary ventilated enclosures used as engineering control measures in this study effectively reduced emissions of diacetyl and 2,3-pentanedione at the source in this facility. These findings motivated management to explore options with a grinding equipment manufacturer to permanently ventilate their grinders to reduce emissions of diacetyl and 2,3-pentanedione.


Assuntos
Bronquiolite , Exposição Ocupacional , Animais , Café , Diacetil/análise , Aromatizantes/análise , Exposição Ocupacional/análise , Exposição Ocupacional/prevenção & controle , Pentanonas , Ratos
5.
MMWR Morb Mortal Wkly Rep ; 71(23): 770-775, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35679198

RESUMO

Effective COVID-19 prevention in kindergarten through grade 12 (K-12) schools requires multicomponent prevention strategies in school buildings and school-based transportation, including improving ventilation (1). Improved ventilation can reduce the concentration of infectious aerosols and duration of potential exposures (2,3), is linked to lower COVID-19 incidence (4), and can offer other health-related benefits (e.g., better measures of respiratory health, such as reduced allergy symptoms) (5). Whereas ambient wind currents effectively dissipate SARS-CoV-2 (the virus that causes COVID-19) outdoors,* ventilation systems provide protective airflow and filtration indoors (6). CDC examined reported ventilation improvement strategies among a nationally representative sample of K-12 public schools in the United States using wave 4 (February 14-March 27, 2022) data from the National School COVID-19 Prevention Study (NSCPS) (420 schools), a web-based survey administered to school-level administrators beginning in summer 2021.† The most frequently reported ventilation improvement strategies were lower-cost strategies, including relocating activities outdoors (73.6%), inspecting and validating existing heating, ventilation and air conditioning (HVAC) systems (70.5%), and opening doors (67.3%) or windows (67.2%) when safe to do so. A smaller proportion of schools reported more resource-intensive strategies such as replacing or upgrading HVAC systems (38.5%) or using high-efficiency particulate air (HEPA) filtration systems in classrooms (28.2%) or eating areas (29.8%). Rural and mid-poverty-level schools were less likely to report several resource-intensive strategies. For example, rural schools were less likely to use portable HEPA filtration systems in classrooms (15.6%) than were city (37.7%) and suburban schools (32.9%), and mid-poverty-level schools were less likely than were high-poverty-level schools to have replaced or upgraded HVAC systems (32.4% versus 48.8%). Substantial federal resources to improve ventilation in schools are available.§ Ensuring their use might reduce SARS-CoV-2 transmission in schools. Focusing support on schools least likely to have resource-intensive ventilation strategies might facilitate equitable implementation of ventilation improvements.


Assuntos
Poluição do Ar em Ambientes Fechados , COVID-19 , Ar Condicionado , Poluição do Ar em Ambientes Fechados/prevenção & controle , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , SARS-CoV-2 , Instituições Acadêmicas , Estados Unidos/epidemiologia , Ventilação
6.
Buildings (Basel) ; 12(8)2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37961074

RESUMO

Vat photopolymerization (VP), a type of additive manufacturing process that cures resin to build objects, can emit potentially hazardous particles and gases. We evaluated two VP technologies, stereolithography (SLA) and digital light processing (DLP), in three separate environmental chambers to understand task-based impacts on indoor air quality. Airborne particles, total volatile organic compounds (TVOCs), and/or specific volatile organic compounds (VOCs) were monitored during each task to evaluate their exposure potential. Regardless of duration, all tasks released particles and organic gases, though concentrations varied between SLA and DLP processes and among tasks. Maximum particle concentrations reached 1200 #/cm3 and some aerosols contained potentially hazardous elements such as barium, chromium, and manganese. TVOC concentrations were highest for the isopropyl alcohol (IPA) rinsing, soaking, and drying post-processing tasks (up to 36.8 mg/m3), lowest for the resin pouring pre-printing, printing, and resin recovery post-printing tasks (up to 0.1 mg/m3), and intermediate for the curing post-processing task (up to 3 mg/m3). Individual VOCs included, among others, the potential occupational carcinogen acetaldehyde and the immune sensitizer 2-hydroxypropyl methacrylate (pouring, printing, recovery, and curing tasks). Careful consideration of all tasks is important for the development of strategies to minimize indoor air pollution and exposure potential from VP processes.

8.
Viruses ; 13(12)2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34960804

RESUMO

There is strong evidence associating the indoor environment with transmission of SARS-CoV-2, the virus that causes COVID-19. SARS-CoV-2 can spread by exposure to droplets and very fine aerosol particles from respiratory fluids that are released by infected persons. Layered mitigation strategies, including but not limited to maintaining physical distancing, adequate ventilation, universal masking, avoiding overcrowding, and vaccination, have shown to be effective in reducing the spread of SARS-CoV-2 within the indoor environment. Here, we examine the effect of mitigation strategies on reducing the risk of exposure to simulated respiratory aerosol particles within a classroom-style meeting room. To quantify exposure of uninfected individuals (Recipients), surrogate respiratory aerosol particles were generated by a breathing simulator with a headform (Source) that mimicked breath exhalations. Recipients, represented by three breathing simulators with manikin headforms, were placed in a meeting room and affixed with optical particle counters to measure 0.3-3 µm aerosol particles. Universal masking of all breathing simulators with a 3-ply cotton mask reduced aerosol exposure by 50% or more compared to scenarios with simulators unmasked. While evaluating the effect of Source placement, Recipients had the highest exposure at 0.9 m in a face-to-face orientation. Ventilation reduced exposure by approximately 5% per unit increase in air change per hour (ACH), irrespective of whether increases in ACH were by the HVAC system or portable HEPA air cleaners. The results demonstrate that mitigation strategies, such as universal masking and increasing ventilation, reduce personal exposure to respiratory aerosols within a meeting room. While universal masking remains a key component of a layered mitigation strategy of exposure reduction, increasing ventilation via system HVAC or portable HEPA air cleaners further reduces exposure.


Assuntos
Poluição do Ar em Ambientes Fechados/prevenção & controle , Exposição por Inalação/prevenção & controle , Máscaras , Distanciamento Físico , Aerossóis e Gotículas Respiratórios/virologia , Ventilação , Ar Condicionado , COVID-19/prevenção & controle , Humanos , SARS-CoV-2/isolamento & purificação
9.
MMWR Morb Mortal Wkly Rep ; 70(27): 972-976, 2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34237047

RESUMO

SARS-CoV-2, the virus that causes COVID-19, can be spread by exposure to droplets and aerosols of respiratory fluids that are released by infected persons when they cough, sing, talk, or exhale. To reduce indoor transmission of SARS-CoV-2 between persons, CDC recommends measures including physical distancing, universal masking (the use of face masks in public places by everyone who is not fully vaccinated), and increased room ventilation (1). Ventilation systems can be supplemented with portable high efficiency particulate air (HEPA) cleaners* to reduce the number of infectious particles in the air and provide enhanced protection from transmission between persons (2); two recent reports found that HEPA air cleaners in classrooms could reduce overall aerosol particle concentrations by ≥80% within 30 minutes (3,4). To investigate the effectiveness of portable HEPA air cleaners and universal masking at reducing exposure to exhaled aerosol particles, the investigation team used respiratory simulators to mimic a person with COVID-19 and other, uninfected persons in a conference room. The addition of two HEPA air cleaners that met the Environmental Protection Agency (EPA)-recommended clean air delivery rate (CADR) (5) reduced overall exposure to simulated exhaled aerosol particles by up to 65% without universal masking. Without the HEPA air cleaners, universal masking reduced the combined mean aerosol concentration by 72%. The combination of the two HEPA air cleaners and universal masking reduced overall exposure by up to 90%. The HEPA air cleaners were most effective when they were close to the aerosol source. These findings suggest that portable HEPA air cleaners can reduce exposure to SARS-CoV-2 aerosols in indoor environments, with greater reductions in exposure occurring when used in combination with universal masking.


Assuntos
Ar Condicionado/instrumentação , Filtros de Ar , Poluição do Ar em Ambientes Fechados/prevenção & controle , Máscaras , SARS-CoV-2 , Aerossóis , Desenho de Equipamento , Humanos , Estados Unidos
10.
Ann Work Expo Health ; 65(5): 605-611, 2021 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-33616189

RESUMO

Ultraviolet germicidal irradiation uses ultraviolet C (UV-C) energy to disinfect surfaces in clinical settings. Verifying that the doses of UV-C energy received by surfaces are adequate for proper disinfection levels can be difficult and expensive. Our study aimed to test commercially available colorimetric labels, sensitive to UV-C energy, and compare their precision with an accepted radiometric technique. The color-changing labels were found to predictably change color in a dose-dependent manner that would allow them to act as a qualitative alternative to radiometry when determining the minimum UV-C energy dosage received at surfaces. If deployed using careful protective techniques to avoid unintentional exposure to sunlight or other light sources, the use of colorimetric labels could provide inexpensive, easy, and accurate verification of effective UV-C dosing in clinical spaces.


Assuntos
Colorimetria , Exposição Ocupacional , Desinfecção , Humanos , Radiometria , Raios Ultravioleta
11.
J Environ Health ; 83(6): 14-19, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35414727

RESUMO

In October 2018, the Centers for Disease Control and Prevention was notified of a cluster of Legionnaires' disease cases in workers at a racetrack facility. The objective of the resulting investigation was to determine the extent of the outbreak and identify potential sources of exposure to halt transmission. Case-finding and interviews were conducted among symptomatic racetrack workers who were known to be at the facility within 14 days prior to symptom onset. An environmental assessment of the facility and surrounding area was conducted for sources of potential Legionella exposure. In total, 17 legionellosis cases were identified. The environmental assessment revealed a poorly maintained hot tub in the jockey locker room as the most likely source. Further investigation identified deficiencies in the facility's ventilation systems, which suggested a transmission mechanism for workers who never entered the locker room floor. Considering indirect exposure routes via air handling systems can be useful for source identification and case-finding in legionellosis outbreaks.

12.
J Chem Health Saf ; 28(3): 190-200, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35979329

RESUMO

The literature on emissions during material extrusion additive manufacturing with 3-D printers is expanding; however, there is a paucity of data for large-format additive manufacturing (LFAM) machines that can extrude high-melt-temperature polymers. Emissions from two LFAM machines were monitored during extrusion of six polymers: acrylonitrile butadiene styrene (ABS), polycarbonate (PC), high-melt-temperature polysulfone (PSU), poly(ether sulfone) (PESU), polyphenylene sulfide (PPS), and Ultem (poly(ether imide)). Particle number, total volatile organic compound (TVOC), carbon monoxide (CO), and carbon dioxide (CO2) concentrations were monitored in real-time. Particle emission rate values (no./min) were as follows: ABS (1.7 × 1011 to 7.7 × 1013), PC (5.2 × 1011 to 3.6 × 1013), Ultem (5.7 × 1012 to 3.1 × 1013), PPS (4.6 × 1011 to 6.2 × 1012), PSU (1.5 × 1012 to 3.4 × 1013), and PESU (2.0 to 5.0 × 1013). For print jobs where the mass of extruded polymer was known, particle yield values (g-1 extruded) were as follows: ABS (4.5 × 108 to 2.9 × 1011), PC (1.0 × 109 to 1.7 × 1011), PSU (5.1 × 109 to 1.2 × 1011), and PESU (0.8 × 1011 to 1.7 × 1011). TVOC emission yields ranged from 0.005 mg/g extruded (PESU) to 0.7 mg/g extruded (ABS). The use of wall-mounted exhaust ventilation fans was insufficient to completely remove airborne particulate and TVOC from the print room. Real-time CO monitoring was not a useful marker of particulate and TVOC emission profiles for Ultem, PPS, or PSU. Average CO2 and particle concentrations were moderately correlated (r s = 0.76) for PC polymer. Extrusion of ABS, PC, and four high-melt-temperature polymers by LFAM machines released particulate and TVOC at levels that could warrant consideration of engineering controls. LFAM particle emission yields for some polymers were similar to those of common desktop-scale 3-D printers.

13.
J Chem Health Saf ; 28(4): 268-278, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-36147482

RESUMO

Extrusion of high-melt-temperature polymers on large-format additive manufacturing (LFAM) machines releases particles and gases, though there is no data describing their physical and chemical characteristics. Emissions from two LFAM machines were monitored during extrusion of acrylonitrile butadiene styrene (ABS) and polycarbonate (PC) polymers as well as high-melt-temperature Ultem (poly(ether imide)), polysulfone (PSU), poly(ether sulfone) (PESU), and polyphenylene sulfide (PPS) polymers. Filter samples of particles were collected for quantification of elements and bisphenol A and S (BPA, BPS) and visualization of morphology. Individual gases were quantified on substance-specific media. Aerosol sampling demonstrated that concentrations of elements were generally low for all polymers, with a maximum of 1.6 mg/m3 for iron during extrusion of Ultem. BPA, an endocrine disruptor, was released into air during extrusion of PC (range: 0.4 ± 0.1 to 21.3 ± 5.3 µg/m3). BPA and BPS (also an endocrine disruptor) were released into air during extrusion of PESU (BPA, 2.0-8.7 µg/m3; BPS, 0.03-0.07 µg/m3). Work surfaces and printed parts were contaminated with BPA (<8-587 ng/100 cm2) and BPS (<0.22-2.5 ng/100 cm2). Gas-phase sampling quantified low levels of respiratory irritants (phenol, SO2, toluene, xylenes), possible or known asthmagens (caprolactam, methyl methacrylate, 4-oxopentanal, styrene), and possible occupational carcinogens (benzene, formaldehyde, acetaldehyde) in air. Characteristics of particles and gases released by high-melt-temperature polymers during LFAM varied, which indicated the need for polymer-specific exposure and risk assessments. The presence of BPA and BPS on surfaces revealed a previously unrecognized source of dermal exposure for additive manufacturing workers using PC and PESU polymers.

14.
MMWR Morb Mortal Wkly Rep ; 69(50): 1906-1910, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33332291

RESUMO

Numerous recent assessments indicate that meat and poultry processing facility workers are at increased risk for infection with SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19) (1-4). Physical proximity to other workers and shared equipment can facilitate disease transmission in these settings (2-4). The disproportionate number of foreign-born workers employed in meat and poultry processing reflects structural, social, and economic inequities that likely contribute to an increased COVID-19 incidence in this population* (5). In May 2020, the Maryland Department of Health and CDC investigated factors that might affect person-to-person SARS-CoV-2 transmission among persons who worked at two poultry processing facilities.† A survey administered to 359 workers identified differences in risk factors for SARS-CoV-2 infection between workers born outside the United States and U.S.-born workers. Compared with U.S.-born workers, foreign-born workers had higher odds of working in fixed locations on the production floor (odds ratio [OR] for cutup and packaging jobs = 4.8), of having shared commutes (OR = 1.9), and of living with other poultry workers (OR = 6.0). They had lower odds of participating in social gatherings (OR for visits to family = 0.2; OR for visits to friends = 0.4), and they visited fewer businesses in the week before the survey than did their U.S.-born coworkers. Some workplace risk factors can be mitigated through engineering and administrative controls focused on the production floor, and this will be of particular benefit to the foreign-born workers concentrated in these areas. Employers and health departments can also partner with local organizations to disseminate culturally and linguistically tailored messages about risk reduction behaviors in community settings, including shared transportation§ and household members dwelling in close quarters.¶.


Assuntos
COVID-19/transmissão , Emigrantes e Imigrantes/estatística & dados numéricos , Indústria de Processamento de Alimentos , Doenças Profissionais/epidemiologia , Adulto , Animais , COVID-19/epidemiologia , Feminino , Humanos , Masculino , Maryland/epidemiologia , Pessoa de Meia-Idade , Aves Domésticas , Fatores de Risco
15.
Front Public Health ; 8: 561740, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072698

RESUMO

Roasted coffee and many coffee flavorings emit volatile organic compounds (VOCs) including diacetyl and 2,3-pentanedione. Exposures to VOCs during roasting, packaging, grinding, and flavoring coffee can negatively impact the respiratory health of workers. Inhalational exposures to diacetyl and 2,3-pentanedione can cause obliterative bronchiolitis. This study summarizes exposures to and emissions of VOCs in 17 coffee roasting and packaging facilities that included 10 cafés. We collected 415 personal and 760 area full-shift, and 606 personal task-based air samples for diacetyl, 2,3-pentanedione, 2,3-hexanedione, and acetoin using silica gel tubes. We also collected 296 instantaneous activity and 312 instantaneous source air measurements for 18 VOCs using evacuated canisters. The highest personal full-shift exposure in part per billion (ppb) to diacetyl [geometric mean (GM) 21 ppb; 95th percentile (P95) 79 ppb] and 2,3-pentanedione (GM 15 ppb; P95 52 ppb) were measured for production workers in flavored coffee production areas. These workers also had the highest percentage of measurements above the NIOSH Recommended Exposure Limit (REL) for diacetyl (95%) and 2,3-pentanedione (77%). Personal exposures to diacetyl (GM 0.9 ppb; P95 6.0 ppb) and 2,3-pentanedione (GM 0.7 ppb; P95 4.4 ppb) were the lowest for non-production workers of facilities that did not flavor coffee. Job groups with the highest personal full-shift exposures to diacetyl and 2,3-pentanedione were flavoring workers (GM 34 and 38 ppb), packaging workers (GM 27 and 19 ppb) and grinder operator (GM 26 and 22 ppb), respectively, in flavored coffee facilities, and packaging workers (GM 8.0 and 4.4 ppb) and production workers (GM 6.3 and 4.6 ppb) in non-flavored coffee facilities. Baristas in cafés had mean full-shift exposures below the RELs (GM 4.1 ppb diacetyl; GM 4.6 ppb 2,3-pentanedione). The tasks, activities, and sources associated with flavoring in flavored coffee facilities and grinding in non-flavored coffee facilities, had some of the highest GM and P95 estimates for both diacetyl and 2,3-pentanedione. Controlling emissions at grinding machines and flavoring areas and isolating higher exposure areas (e.g., flavoring, grinding, and packaging areas) from the main production space and from administrative or non-production spaces is essential for maintaining exposure control.


Assuntos
Exposição Ocupacional , Compostos Orgânicos Voláteis , Café/efeitos adversos , Diacetil/efeitos adversos , Humanos , Exposição Ocupacional/análise , Pentanonas , Estados Unidos , Compostos Orgânicos Voláteis/análise
16.
J Hosp Infect ; 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32283175

RESUMO

BACKGROUND: Candida auris, often a multi-drug resistant fungal pathogen, has become an emerging threat in healthcare settings around the world. Reliable disinfection protocols specifically designed to inactivate C. auris are essential, as many chemical disinfectants commonly used in healthcare settings have been shown to have variable efficacy at inactivating C. auris. AIM: Ultraviolet germicidal irradiation (UVGI) was investigated as a method to inactivate clinically relevant strains of C. auris. METHODS: Ten C. auris and two C. albicans isolates were exposed to ultraviolet (UV) energy to determine the UV dose required to inactivate each isolate. Using a UV reactor, each isolate (106 cells/mL) was exposed to 11 UV doses ranging from 10-150 mJ/cm2 and then cultured to assess cell viability. FINDINGS: An exponential decay model was applied to each dose-response curve to determine inactivation rate constants for each isolate, which ranged from 0.108-0.176 cm2/mJ for C. auris and 0.239-0.292 cm2/mJ for C. albicans. As the model of exponential decay did not accurately estimate the dose beyond 99.9% inactivation, a logistic regression model was applied to better estimate the doses required for 99.999% inactivation. Using this model, significantly greater UV energy was required to inactivate C. auris (103 to 192 mJ/cm2) when compared to C. albicans (78 to 80 mJ/cm2). CONCLUSION: This study demonstrated UVGI as a feasible approach for inactivating C. auris, although variable susceptibility among isolates must be taken into account. This dose-response data is critical for recommending UVGI dosing strategies to be tested in healthcare settings.

18.
Inhal Toxicol ; 31(13-14): 432-445, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31874579

RESUMO

Objective: Fused filament fabrication "3-dimensional (3-D)" printing has expanded beyond the workplace to 3-D printers and pens for use by children as toys to create objects.Materials and methods: Emissions from two brands of toy 3-D pens and one brand of toy 3-D printer were characterized in a 0.6 m3 chamber (particle number, size, elemental composition; concentrations of individual and total volatile organic compounds (TVOC)). The effects of print parameters on these emission metrics were evaluated using mixed-effects models. Emissions data were used to model particle lung deposition and TVOC exposure potential.Results: Geometric mean particle yields (106-1010 particles/g printed) and sizes (30-300 nm) and TVOC yields (

Assuntos
Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Jogos e Brinquedos , Impressão Tridimensional , Compostos Orgânicos Voláteis/análise , Criança , Humanos , Tamanho da Partícula
19.
J Occup Environ Hyg ; 16(12): 804-816, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31638865

RESUMO

The protection of emergency medical service (EMS) workers from airborne disease transmission is important during routine transport of patients with infectious respiratory illnesses and would be critical during a pandemic of a disease such as influenza. However, few studies have examined the effectiveness of ambulance ventilation systems at reducing EMS worker exposure to airborne particles (aerosols). In our study, a cough aerosol simulator mimicking a coughing patient with an infectious respiratory illness was placed on a patient cot in an ambulance. The concentration and dispersion of cough aerosol particles were measured for 15 min at locations corresponding to likely positions of an EMS worker treating the patient. Experiments were performed with the patient cot at an angle of 0° (horizontal), 30°, and 60°, and with the ambulance ventilation system set to 0, 5, and 12 air changes/hour (ACH). Our results showed that increasing the air change rate significantly reduced the airborne particle concentration (p < 0.001). Increasing the air change rate from 0 to 5 ACH reduced the mean aerosol concentration by 34% (SD = 19%) overall, while increasing it from 0 to 12 ACH reduced the concentration by 68% (SD = 9%). Changing the cot angle also affected the concentration (p < 0.001), but the effect was more modest, especially at 5 and 12 ACH. Contrary to our expectations, the aerosol concentrations at the different worker positions were not significantly different (p < 0.556). Flow visualization experiments showed that the ventilation system created a recirculation pattern which helped disperse the aerosol particles throughout the compartment, reducing the effectiveness of the system. Our findings indicate that the ambulance ventilation system reduced but did not eliminate worker exposure to infectious aerosol particles. Aerosol exposures were not significantly different at different locations within the compartment, including locations behind and beside the patient. Improved ventilation system designs with smoother and more unidirectional airflows could provide better worker protection.


Assuntos
Aerossóis/análise , Ambulâncias , Transmissão de Doença Infecciosa do Paciente para o Profissional/prevenção & controle , Exposição Ocupacional/prevenção & controle , Ventilação/métodos , Ar Condicionado/métodos , Tosse , Serviços Médicos de Emergência , Humanos , Infecções Respiratórias/transmissão
20.
Indoor Air ; 28(6): 840-851, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30101413

RESUMO

Fused deposition modeling (FDM™) 3-dimensional printing uses polymer filament to build objects. Some polymer filaments are formulated with additives, though it is unknown if they are released during printing. Three commercially available filaments that contained carbon nanotubes (CNTs) were printed with a desktop FDM™ 3-D printer in a chamber while monitoring total particle number concentration and size distribution. Airborne particles were collected on filters and analyzed using electron microscopy. Carbonyl compounds were identified by mass spectrometry. The elemental carbon content of the bulk CNT-containing filaments was 1.5 to 5.2 wt%. CNT-containing filaments released up to 1010 ultrafine (d < 100 nm) particles/g printed and 106 to 108 respirable (d ~0.5 to 2 µm) particles/g printed. From microscopy, 1% of the emitted respirable polymer particles contained visible CNTs. Carbonyl emissions were observed above the limit of detection (LOD) but were below the limit of quantitation (LOQ). Modeling indicated that, for all filaments, the average proportional lung deposition of CNT-containing polymer particles was 6.5%, 5.7%, and 7.2% for the head airways, tracheobronchiolar, and pulmonary regions, respectively. If CNT-containing polymer particles are hazardous, it would be prudent to control emissions during use of these filaments.


Assuntos
Imageamento Tridimensional , Nanotubos de Carbono , Polímeros/química , Monitoramento Ambiental/métodos , Exposição por Inalação , Material Particulado/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...