Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 9(5)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429096

RESUMO

Hydrochloric acid (HCl)-treated wheat protein (HWP) is widely used in various products, including foods, cosmetics and shampoos. Recently, immediate hypersensitivity towards facial soap containing HWP has been reported. HCl treatment of protein causes hydrolysis not only of main-chain amide bonds (peptide-bond hydrolysis) but also of side-chain ones (deamidation). We have already reported that gliadin, the main allergen in wheat, reduces allergenicity and increases digestibility by deamidation, indicating that deamidation and peptide-bond hydrolysis are effective to reduce the allergenicity of wheat protein. However, transdermally administered HWP is assumed to induce sensitization to orally administered wheat protein even in those who have been taking wheat products daily before sensitization. The present study was conducted to examine which structural change is responsible for the induction of cutaneous sensitization by comparing the allergenicity of deamidated and/or peptide-bond-hydrolyzed wheat gliadin. Because we have developed a deamidation method without causing peptide-bond hydrolysis, only deamidated wheat gliadin is available. Therefore, after deamidated-only, hydrolyzed-only, and deamidated and hydrolyzed gliadins were transdermally administered to mice for several weeks, the corresponding gliadin was intraperitoneally administered and allergenicity was evaluated. Transdermal administration of deamidated and hydrolyzed gliadin induced severe allergic reaction, while that of deamidated-only and hydrolyzed-only gliadin showed almost no allergic response. This result indicates that both deamidation and peptide-bond hydrolysis are necessary to increase the allergenic potency of transdermally administered wheat gliadin.

2.
J Agric Food Chem ; 64(24): 4882-90, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27228466

RESUMO

The suppressive effect of rice albumin (RA) of 16 kDa on elevation of blood glucose level after oral loading of starch or glucose and its possible mechanism were examined. RA suppressed the increase in blood glucose levels in both the oral starch tolerance test and the oral glucose tolerance test. The blood glucose concentrations 15 min after the oral administration of starch were 144 ± 6 mg/dL for control group and 127 ± 4 mg/dL for RA 200 mg/kg BW group, while those after the oral administration of glucose were 157 ± 7 mg/dL for control group and 137 ± 4 mg/dL for RA 200 mg/kg BW group. However, in the intraperitoneal glucose tolerance test, no significant differences in blood glucose level were observed between RA and the control groups, indicating that RA suppresses the glucose absorption from the small intestine. However, RA did not inhibit the activity of mammalian α-amylase. RA was hydrolyzed to an indigestible high-molecular-weight peptide (HMP) of 14 kDa and low-molecular-weight peptides by pepsin and pancreatin. Furthermore, RA suppressed the glucose diffusion rate through a semipermeable membrane like dietary fibers in vitro. Therefore, the indigestible HMP may adsorb glucose and suppress its absorption from the small intestine.


Assuntos
Albuminas/metabolismo , Glucose/metabolismo , Insulina/sangue , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Animais , Glicemia/metabolismo , Digestão , Mucosa Gástrica/metabolismo , Teste de Tolerância a Glucose , Masculino , Oryza/química , Período Pós-Prandial , Ratos , Ratos Wistar , alfa-Amilases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA