Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Chem Sci ; 15(21): 8227-8241, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38817593

RESUMO

The three human SNM1 metallo-ß-lactamase fold nucleases (SNM1A-C) play key roles in DNA damage repair and in maintaining telomere integrity. Genetic studies indicate that they are attractive targets for cancer treatment and to potentiate chemo- and radiation-therapy. A high-throughput screen for SNM1A inhibitors identified diverse pharmacophores, some of which were shown by crystallography to coordinate to the di-metal ion centre at the SNM1A active site. Structure and turnover assay-guided optimization enabled the identification of potent quinazoline-hydroxamic acid containing inhibitors, which bind in a manner where the hydroxamic acid displaces the hydrolytic water and the quinazoline ring occupies a substrate nucleobase binding site. Cellular assays reveal that SNM1A inhibitors cause sensitisation to, and defects in the resolution of, cisplatin-induced DNA damage, validating the tractability of MBL fold nucleases as cancer drug targets.

2.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612894

RESUMO

With the ambition to identify novel chemical starting points that can be further optimized into small drug-like inhibitors of insulin-regulated aminopeptidase (IRAP) and serve as potential future cognitive enhancers in the clinic, we conducted an ultra-high-throughput screening campaign of a chemically diverse compound library of approximately 400,000 drug-like small molecules. Three biochemical and one biophysical assays were developed to enable large-scale screening and hit triaging. The screening funnel, designed to be compatible with high-density microplates, was established with two enzyme inhibition assays employing either fluorescent or absorbance readouts. As IRAP is a zinc-dependent enzyme, the remaining active compounds were further evaluated in the primary assay, albeit with the addition of zinc ions. Rescreening with zinc confirmed the inhibitory activity for most compounds, emphasizing a zinc-independent mechanism of action. Additionally, target engagement was confirmed using a complementary biophysical thermal shift assay where compounds causing positive/negative thermal shifts were considered genuine binders. Triaging based on biochemical activity, target engagement, and drug-likeness resulted in the selection of 50 qualified hits, of which the IC50 of 32 compounds was below 3.5 µM. Despite hydroxamic acid dominance, diverse chemotypes with biochemical activity and target engagement were discovered, including non-hydroxamic acid compounds. The most potent compound (QHL1) was resynthesized with a confirmed inhibitory IC50 of 320 nM. Amongst these compounds, 20 new compound structure classes were identified, providing many new starting points for the development of unique IRAP inhibitors. Detailed characterization and optimization of lead compounds, considering both hydroxamic acids and other diverse structures, are in progress for further exploration.


Assuntos
Aminopeptidases , Insulina , Ensaios de Triagem em Larga Escala , Insulina Regular Humana , Corantes , Ácidos Hidroxâmicos , Zinco
3.
Patterns (N Y) ; 4(5): 100733, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37223265

RESUMO

Understanding a drug candidate's mechanism of action is crucial for its further development. However, kinetic schemes are often complex and multi-parametric, especially for proteins in oligomerization equilibria. Here, we demonstrate the use of particle swarm optimization (PSO) as a method to select between different sets of parameters that are too far apart in the parameter space to be found by conventional approaches. PSO is based upon the swarming of birds: each bird in the flock assesses multiple landing spots while at the same time sharing that information with its neighbors. We applied this approach to the kinetics of HSD17ß13 enzyme inhibitors, which displayed unusually large thermal shifts. Thermal shift data for HSD17ß13 indicated that the inhibitor shifted the oligomerization equilibrium toward the dimeric state. Validation of the PSO approach was provided by experimental mass photometry data. These results encourage further exploration of multi-parameter optimization algorithms as tools in drug discovery.

4.
J Med Chem ; 65(16): 11270-11290, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35948061

RESUMO

G-protein-coupled receptor 84 (GPR84) is a proinflammatory orphan G-protein-coupled receptor implicated in several inflammatory and fibrotic diseases. Several agonist and antagonist ligands have been developed that target GPR84; however, a noncompetitive receptor blocker that was progressed to phase II clinical trials failed to demonstrate efficacy. New high-quality antagonists are required to investigate the pathophysiological role of GPR84 and to validate GPR84 as a therapeutic target. We previously reported the discovery of a novel triazine GPR84 competitive antagonist 1. Here, we describe an extensive structure-activity relationship (SAR) of antagonist 1 and also present in silico docking with supporting mutagenesis studies that reveals a potential binding pose for this type of orthosteric antagonist. Lead compound 42 is a potent GPR84 antagonist with a favorable pharmacokinetic (PK) profile suitable for further drug development.


Assuntos
Receptores Acoplados a Proteínas G , Triazinas , Ligantes , Receptores Acoplados a Proteínas G/metabolismo , Relação Estrutura-Atividade , Triazinas/farmacologia
5.
Assay Drug Dev Technol ; 20(3): 111-124, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35333596

RESUMO

The role of the androgen receptor (AR) in the progression of prostate cancer (PCa) is well established and competitive inhibition of AR ligand binding domain (LBD) has been the mainstay of antiandrogen therapies for advanced and metastatic disease. However, the efficacy of such drugs is often limited by the emergence of resistance, mediated through point mutations and receptor splice variants lacking the AR-LBD. As a result, the prognosis for patients with malignant, castrate-resistant disease remains poor. The amino terminal domain (NTD) of the AR has been shown to be critical for AR function. Its modular activation function (AF-1) is important for both gene regulation and participation in protein-protein interactions. However, due to the intrinsically disordered structure of the domain, its potential as a candidate for therapeutic intervention has been generally overlooked. In this article, we describe the design and development of a functional cell-based assay aimed at identifying small-molecule inhibitors of the AR-NTD. We demonstrate the suitability of the assay for high-throughput screening platforms and validate two initial hits emerging from a small, targeted, library screen in PCa cells.


Assuntos
Ensaios de Triagem em Larga Escala , Neoplasias da Próstata , Antagonistas de Receptores de Andrógenos/farmacologia , Linhagem Celular Tumoral , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Ativação Transcricional
7.
ACS Pharmacol Transl Sci ; 4(5): 1598-1613, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34661077

RESUMO

GPR84 is a poorly characterized, nominally orphan, proinflammatory G protein-coupled receptor that can be activated by medium chain length fatty acids. It is attracting considerable interest as a potential therapeutic target for antagonist ligands in both inflammatory bowel diseases and idiopathic pulmonary fibrosis. Successful screening of more than 300 000 compounds from a small molecule library followed by detailed analysis of some 50 drug-like hits identified 3-((5,6-bis(4-methoxyphenyl)-1,2,4-triazin-3-yl)methyl)-1H-indole as a high affinity and highly selective competitive antagonist of human GPR84. Tritiation of a di-iodinated form of the core structure produced [3H]3-((5,6-diphenyl-1,2,4-triazin-3-yl)methyl)-1H-indole, which allowed effective measurement of receptor levels in both transfected cell lines and lipopolysaccharide-treated THP-1 monocyte/macrophage cells. Although this compound series lacks significant affinity at mouse GPR84, homology modeling and molecular dynamics simulations provided a potential rationale for this difference, and alteration of two residues in mouse GPR84 to the equivalent amino acids in the human orthologue, predicted to open the antagonist binding pocket, validated this model. Sequence alignment of other species orthologues further predicted binding of the compounds as high affinity antagonists at macaque, pig, and dog GPR84 but not at the rat orthologue, and pharmacological experiments confirmed these predictions. These studies provide a new class of GPR84 antagonists that display species selectivity defined via receptor modeling and mutagenesis.

8.
Biochem J ; 477(4): 801-814, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32011652

RESUMO

Autophagy is a critical cellular homeostatic mechanism, the dysfunction of which has been linked to a wide variety of disease states. It is regulated through the activity of specific kinases, in particular Unc-51 like autophagy activating kinase 1 (ULK1) and Phosphatidylinositol 3-kinase vacuolar protein sorting 34 (VPS34), which have both been suggested as potential targets for drug development. To identify new chemical compounds that might provide useful chemical tools or act as starting points for drug development, we screened each protein against the Published Kinase Inhibitor Set (PKIS), a library of known kinase inhibitors. In vitro screening and analysis of the published selectivity profiles of the hits informed the selection of three relatively potent ATP-competitive inhibitors against each target that presented the least number of off-target kinases in common. Cellular assays confirmed potent inhibition of autophagy in response to two of the ULK1 inhibitors and all three of the VPS34 inhibitors. These compounds represent not only a new resource for the study of autophagy but also potential chemical starting points for the validation or invalidation of these two centrally important autophagy kinases in disease models.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/antagonistas & inibidores , Autofagia , Classe III de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Descoberta de Drogas , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Osteossarcoma/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Osteossarcoma/tratamento farmacológico , Osteossarcoma/metabolismo , Fosforilação , Células Tumorais Cultivadas
9.
ChemMedChem ; 15(1): 79-95, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31675166

RESUMO

Kallikrein-related peptidase 6 (KLK6) is a secreted serine protease that belongs to the family of tissue kallikreins. Aberrant expression of KLK6 has been found in different cancers and neurodegenerative diseases, and KLK6 is currently studied as a potential target in these pathologies. We report a novel series of KLK6 inhibitors discovered in a high-throughput screen within the European Lead Factory program. Structure-guided design based on docking studies enabled rapid progression of a hit cluster to inhibitors with improved potency, selectivity and pharmacokinetic properties. In particular, inhibitors 32 ((5R)-3-(4-carbamimidoylphenyl)-N-((S)-1-(naphthalen-1-yl)propyl)-2-oxooxazolidine-5-carboxamide) and 34 ((5R)-3-(6-carbamimidoylpyridin-3-yl)-N-((1S)-1-(naphthalen-1-yl)propyl)-2-oxooxazolidine-5-carboxamide) have single-digit nanomolar potency against KLK6, with over 25-fold and 100-fold selectivities against the closely related enzyme trypsin, respectively. The most potent compound, 32, effectively reduces KLK6-dependent invasion of HCT116 cells. The high potency in combination with good solubility and low clearance of 32 make it a good chemical probe for KLK6 target validation in vitro and potentially in vivo.


Assuntos
Calicreínas/antagonistas & inibidores , Fármacos Neuroprotetores/síntese química , Oxazolidinonas/química , Sítios de Ligação , Movimento Celular/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Células HCT116 , Meia-Vida , Humanos , Concentração Inibidora 50 , Calicreínas/metabolismo , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Oxazolidinonas/metabolismo , Oxazolidinonas/farmacologia , Estereoisomerismo , Relação Estrutura-Atividade
10.
Cells ; 8(11)2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31726720

RESUMO

Cyclic AMP promotes EPAC1 and EPAC2 activation through direct binding to a specific cyclic nucleotide-binding domain (CNBD) within each protein, leading to activation of Rap GTPases, which control multiple cell responses, including cell proliferation, adhesion, morphology, exocytosis, and gene expression. As a result, it has become apparent that directed activation of EPAC1 and EPAC2 with synthetic agonists may also be useful for the future treatment of diabetes and cardiovascular diseases. To identify new EPAC agonists we have developed a fluorescent-based, ultra-high-throughput screening (uHTS) assay that measures the displacement of binding of the fluorescent cAMP analogue, 8-NBD-cAMP to the EPAC1 CNBD. Triage of the output of an approximately 350,000 compound screens using this assay identified a benzofuran oxaloacetic acid EPAC1 binder (SY000) that displayed moderate potency using orthogonal assays (competition binding and microscale thermophoresis). We next generated a limited library of 91 analogues of SY000 and identified SY009, with modifications to the benzofuran ring associated with a 10-fold increase in potency towards EPAC1 over SY000 in binding assays. In vitro EPAC1 activity assays confirmed the agonist potential of these molecules in comparison with the known EPAC1 non-cyclic nucleotide (NCN) partial agonist, I942. Rap1 GTPase activation assays further demonstrated that SY009 selectively activates EPAC1 over EPAC2 in cells. SY009 therefore represents a novel class of NCN EPAC1 activators that selectively activate EPAC1 in cellulae.


Assuntos
Acetatos/farmacologia , Benzofuranos/química , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Acetatos/química , Sítios de Ligação , Linhagem Celular , AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/agonistas , Fatores de Troca do Nucleotídeo Guanina/genética , Ensaios de Triagem em Larga Escala , Humanos , Ligantes , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular
11.
FEBS J ; 286(22): 4509-4524, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31260169

RESUMO

Burkholderia pseudomallei is a serious, difficult to treat Gram-negative pathogen and an increase in the occurrence of drug-resistant strains has been detected. We have directed efforts to identify and to evaluate potential drug targets relevant to treatment of infection by B. pseudomallei. We have selected and characterised the essential enzyme d-alanine-d-alanine ligase (BpDdl), required for the ATP-assisted biosynthesis of a peptidoglycan precursor. A recombinant supply of protein supported high-resolution crystallographic and biophysical studies with ligands (AMP and AMP+d-Ala-d-Ala), and comparisons with orthologues enzymes suggest a ligand-induced conformational change occurring that might be relevant to the catalytic cycle. The detailed biochemical characterisation of the enzyme, development and optimisation of ligand binding assays supported the search for novel inhibitors by screening of selected compound libraries. In a similar manner to that observed previously in other studies, we note a paucity of hits that are worth follow-up and then in combination with a computational analysis of the active site, we conclude that this ligase represents a difficult target for drug discovery. Nevertheless, our reagents, protocols and data can underpin future efforts exploiting more diverse chemical libraries and structure-based approaches.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/química , Burkholderia pseudomallei/enzimologia , Inibidores Enzimáticos/farmacologia , Peptídeo Sintases/química , Monofosfato de Adenosina/metabolismo , Alanina/metabolismo , Antibacterianos/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Peptídeo Sintases/antagonistas & inibidores , Peptídeo Sintases/metabolismo , Ligação Proteica , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
12.
Int J Mol Sci ; 20(12)2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242708

RESUMO

Since quorum sensing (QS) is linked to the establishment of bacterial infection, its inactivation represents one of the newest strategies to fight bacterial pathogens. LsrK is a kinase playing a key role in the processing of autoinducer-2 (AI-2), a quorum-sensing mediator in gut enteric bacteria. Inhibition of LsrK might thus impair the quorum-sensing cascade and consequently reduce bacterial pathogenicity. Aiming for the development of a target-based assay for the discovery of LsrK inhibitors, we evaluated different assay set-ups based on ATP detection and optimized an automation-compatible method for the high-throughput screening of chemical libraries. The assay was then used to perform the screening of a 2000-compound library, which provided 12 active compounds with an IC50 ≤ 10 µM confirming the effectiveness and sensitivity of our assay. Follow-up studies on the positive hits led to the identification of two compounds, harpagoside and rosolic acid, active in a cell-based AI-2 QS interference assay, which are at the moment the most promising candidates for the development of a new class of antivirulence agents based on LsrK inhibition.


Assuntos
Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Percepção de Quorum/efeitos dos fármacos , Antibacterianos/química , Proteínas de Bactérias/antagonistas & inibidores , Biomarcadores , Relação Dose-Resposta a Droga , Descoberta de Drogas/métodos , Inibidores Enzimáticos/química , Ensaios de Triagem em Larga Escala , Humanos , Proteínas Recombinantes , Fluxo de Trabalho
13.
Artigo em Inglês | MEDLINE | ID: mdl-31015150

RESUMO

Infections with parasitic nematodes are among the most significant of the neglected tropical diseases affecting about a billion people living mainly in tropical regions with low economic activity. The most effective current strategy to control nematode infections involves large scale treatment programs with anthelmintic drugs. This strategy is at risk from the emergence of drug resistant parasites. Parasitic nematodes also affect livestock, which are treated with the same limited group of anthelmintic drugs. Livestock parasites resistant to single drugs, and even multi-drug resistant parasites, are appearing in many areas. There is therefore a pressing need for new anthelmintic drugs. Here we use the nematode Caenorhabditis elegans as a model for parasitic nematodes and demonstrate that sinefungin, a competitive inhibitor of methyltransferases, causes a delay in development and reduced fecundity, and inhibits spliced leader trans-splicing. Spliced leader trans-splicing is an essential step in gene expression that does not occur in the hosts of parasitic nematodes, and is therefore a potential target for new anthelmintic drugs. We have exploited the ability of sinefungin to inhibit spliced leader trans-splicing to adapt a green fluorescent protein based reporter gene assay that monitors spliced leader trans-splicing for high-throughput screening for new anthelmintic compounds. We have established a protocol for robust high-throughput screening, combining mechanical dispensing of living C. elegans into 384- or 1536- well plates with addition of compounds using an acoustic liquid dispenser, and the detection of the inhibition of SL trans-splicing using a microplate reader. We have tested this protocol in a first pilot screen and envisage that this assay will be a valuable tool in the search for new anthelmintic drugs.


Assuntos
Anti-Helmínticos/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , RNA Líder para Processamento/genética , Trans-Splicing/efeitos dos fármacos , Animais , Caenorhabditis elegans/genética , Avaliação Pré-Clínica de Medicamentos/instrumentação , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos
14.
SLAS Discov ; 23(3): 225-241, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29460707

RESUMO

High-throughput screening (HTS) is a proven method for discovering new lead matter for drug discovery and chemical biology. To maximize the likelihood of identifying genuine binders to a molecular target, and avoid wasting resources following up compounds with unproductive/nonspecific mechanisms of action, it is important to employ a range of assays during an HTS campaign that build confidence of target engagement for hit compounds. Biophysical methods that measure direct target/compound engagement have established themselves as key techniques in generating this confidence, and they are now integral to the latter stages of HTS triage at the European Lead Factory (ELF). One relatively new technique that the ELF is using is microscale thermophoresis (MST), which measures the differences in rate of movement through a temperature gradient that are caused when single molecular species form complexes. Here we provide an overview of the MST assay development workflow that the ELF employs and a perspective of our experience to date of using MST to triage the output of HTS campaigns and how it compares and contrasts with the use of other biophysical techniques.


Assuntos
Bioensaio/métodos , Ensaios de Triagem em Larga Escala/métodos , Biofísica/métodos , Desenho de Fármacos , Descoberta de Drogas/métodos , Europa (Continente) , Bibliotecas de Moléculas Pequenas/química , Temperatura
15.
J Med Chem ; 60(23): 9790-9806, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29125744

RESUMO

N-Myristoyltransferase (NMT) represents a promising drug target within the parasitic protozoa Trypanosoma brucei (T. brucei), the causative agent for human African trypanosomiasis (HAT) or sleeping sickness. We have previously validated T. brucei NMT as a promising druggable target for the treatment of HAT in both stages 1 and 2 of the disease. We report on the use of the previously reported DDD85646 (1) as a starting point for the design of a class of potent, brain penetrant inhibitors of T. brucei NMT.


Assuntos
Aciltransferases/antagonistas & inibidores , Aminopiridinas/química , Aminopiridinas/farmacologia , Sulfonamidas/química , Sulfonamidas/farmacologia , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/enzimologia , Tripanossomíase Africana/tratamento farmacológico , Aciltransferases/metabolismo , Aminopiridinas/síntese química , Aminopiridinas/farmacocinética , Animais , Encéfalo/metabolismo , Cristalografia por Raios X , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/farmacologia , Humanos , Camundongos , Sulfonamidas/síntese química , Sulfonamidas/farmacocinética , Tripanossomicidas/síntese química , Tripanossomicidas/farmacocinética , Tripanossomíase Africana/metabolismo
16.
Cell Chem Biol ; 24(8): 981-992.e4, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28781123

RESUMO

In late mitosis and G1, origins of DNA replication must be "licensed" for use in the upcoming S phase by being encircled by double hexamers of the minichromosome maintenance proteins MCM2-7. A "licensing checkpoint" delays cells in G1 until sufficient origins have been licensed, but this checkpoint is lost in cancer cells. Inhibition of licensing can therefore kill cancer cells while only delaying normal cells in G1. In a high-throughput cell-based screen for licensing inhibitors we identified a family of 2-arylquinolin-4-amines, the most potent of which we call RL5a. The binding of the origin recognition complex (ORC) to origin DNA is the first step of the licensing reaction. We show that RL5a prevents ORC forming a tight complex with DNA that is required for MCM2-7 loading. Formation of this ORC-DNA complex requires ATP, and we show that RL5a inhibits ORC allosterically to mimic a lack of ATP.


Assuntos
Aminas/farmacologia , Replicação do DNA/efeitos dos fármacos , DNA/metabolismo , Complexo de Reconhecimento de Origem/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Aminas/química , Aminas/metabolismo , Animais , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Cromatina/química , Cromatina/metabolismo , Humanos , Proteínas de Manutenção de Minicromossomo/química , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Complexo de Reconhecimento de Origem/antagonistas & inibidores , Quinolinas/farmacologia , Origem de Replicação/genética , Tiazóis/farmacologia , Xenopus , Proteínas de Xenopus/metabolismo
17.
SLAS Discov ; 22(10): 1193-1202, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28692323

RESUMO

Matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) mass spectrometry has become a promising alternative for high-throughput drug discovery as new instruments offer high speed, flexibility and sensitivity, and the ability to measure physiological substrates label free. Here we developed and applied high-throughput MALDI TOF mass spectrometry to identify inhibitors of the salt-inducible kinase (SIK) family, which are interesting drug targets in the field of inflammatory disease as they control production of the anti-inflammatory cytokine interleukin-10 (IL-10) in macrophages. Using peptide substrates in in vitro kinase assays, we can show that hit identification of the MALDI TOF kinase assay correlates with indirect ADP-Hunter kinase assays. Moreover, we can show that both techniques generate comparable IC50 data for a number of hit compounds and known inhibitors of SIK kinases. We further take these inhibitors to a fluorescence-based cellular assay using the SIK activity-dependent translocation of CRTC3 into the nucleus, thereby providing a complete assay pipeline for the identification of SIK kinase inhibitors in vitro and in cells. Our data demonstrate that MALDI TOF mass spectrometry is fully applicable to high-throughput kinase screening, providing label-free data comparable to that of current high-throughput fluorescence assays.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Inflamação/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Humanos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico/efeitos dos fármacos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
18.
Sci Rep ; 7(1): 294, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28331191

RESUMO

Screening of a carefully selected library of 5,195 small molecules identified 34 hit compounds that interact with the regulatory cyclic nucleotide-binding domain (CNB) of the cAMP sensor, EPAC1. Two of these hits (I942 and I178) were selected for their robust and reproducible inhibitory effects within the primary screening assay. Follow-up characterisation by ligand observed nuclear magnetic resonance (NMR) revealed direct interaction of I942 and I178 with EPAC1 and EPAC2-CNBs in vitro. Moreover, in vitro guanine nucleotide exchange factor (GEF) assays revealed that I942 and, to a lesser extent, I178 had partial agonist properties towards EPAC1, leading to activation of EPAC1, in the absence of cAMP, and inhibition of GEF activity in the presence of cAMP. In contrast, there was very little agonist action of I942 towards EPAC2 or protein kinase A (PKA). To our knowledge, this is the first observation of non-cyclic-nucleotide small molecules with agonist properties towards EPAC1. Furthermore, the isoform selective agonist nature of these compounds highlights the potential for the development of small molecule tools that selectively up-regulate EPAC1 activity.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Fatores de Troca do Nucleotídeo Guanina/agonistas , Nucleotídeos/isolamento & purificação , Nucleotídeos/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Espectroscopia de Ressonância Magnética , Ligação Proteica
19.
SLAS Discov ; 22(6): 676-685, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28314118

RESUMO

A major hallmark of Alzheimer's disease (AD) is the formation of neurotoxic aggregates composed of the amyloid-ß peptide (Aß). Aß has been recognized to interact with numerous proteins, resulting in pathological changes to the metabolism of patients with AD. One such mitochondrial metabolic enzyme is amyloid-binding alcohol dehydrogenase (ABAD), where altered enzyme function caused by the Aß-ABAD interaction is known to cause mitochondrial distress and cytotoxic effects, providing a feasible therapeutic target for AD drug development. Here we have established a high-throughput screening platform for the identification of modulators to the ABAD enzyme. A pilot screen with a total of 6759 compounds from the NIH Clinical Collections (NCC) and SelleckChem libraries and a selection of compounds from the BioAscent diversity collection have allowed validation and robustness to be optimized. The pilot screen revealed 16 potential inhibitors in the low µM range against ABAD with favorable physicochemical properties for blood-brain barrier penetration.


Assuntos
3-Hidroxiacil-CoA Desidrogenases/antagonistas & inibidores , Descoberta de Drogas , Ensaios Enzimáticos , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Doença de Alzheimer/tratamento farmacológico , Fenômenos Químicos , Descoberta de Drogas/métodos , Ensaios Enzimáticos/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Humanos , Técnicas In Vitro , Cinética , Ligantes , Ligação Proteica , Reprodutibilidade dos Testes
20.
Drug Discov Today ; 22(2): 199-203, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27720829

RESUMO

With industry increasingly sourcing preclinical drug discovery projects from academia it is important that new academic discoveries are enabled through translation with HTS-ready assays. However, many scientifically interesting, novel molecular targets lack associated high-quality, robust assays suitable for hit finding and development. To bridge this gap, the Scottish Universities Life Sciences Alliance (SULSA) established a fund to develop assays to meet quality criteria such as those of the European Lead Factory. A diverse project portfolio was quickly assembled, and a review of the learnings and successful outcomes showed this fund as a new highly cost-effective model for leveraging significant follow-on resources, training early-career scientists and establishing a culture of translational drug discovery in the academic community.


Assuntos
Administração Financeira , Ensaios de Triagem em Larga Escala , Pesquisa Translacional Biomédica , Descoberta de Drogas , Indústria Farmacêutica , Humanos , Estudantes , Universidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...