Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 62(14): 2182-2201, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37418678

RESUMO

Over 70 million people are currently at risk of developing Chagas Disease (CD) infection, with more than 8 million people already infected worldwide. Current treatments are limited and innovative therapies are required. Trypanosoma cruzi, the etiological agent of CD, is a purine auxotroph that relies on phosphoribosyltransferases to salvage purine bases from their hosts for the formation of purine nucleoside monophosphates. Hypoxanthine-guanine-xanthine phosphoribosyltransferases (HGXPRTs) catalyze the salvage of 6-oxopurines and are promising targets for the treatment of CD. HGXPRTs catalyze the formation of inosine, guanosine, and xanthosine monophosphates from 5-phospho-d-ribose 1-pyrophosphate and the nucleobases hypoxanthine, guanine, and xanthine, respectively. T. cruzi possesses four HG(X)PRT isoforms. We previously reported the kinetic characterization and inhibition of two isoforms, TcHGPRTs, demonstrating their catalytic equivalence. Here, we characterize the two remaining isoforms, revealing nearly identical HGXPRT activities in vitro and identifying for the first time T. cruzi enzymes with XPRT activity, clarifying their previous annotation. TcHGXPRT follows an ordered kinetic mechanism with a postchemistry event as the rate-limiting step(s) of catalysis. Its crystallographic structures reveal implications for catalysis and substrate specificity. A set of transition-state analogue inhibitors (TSAIs) initially developed to target the malarial orthologue were re-evaluated, with the most potent compound binding to TcHGXPRT with nanomolar affinity, validating the repurposing of TSAIs to expedite the discovery of lead compounds against orthologous enzymes. We identified mechanistic and structural features that can be exploited in the optimization of inhibitors effective against TcHGPRT and TcHGXPRT concomitantly, which is an important feature when targeting essential enzymes with overlapping activities.


Assuntos
Trypanosoma cruzi , Humanos , Trypanosoma cruzi/metabolismo , Pentosiltransferases/metabolismo , Purinas/farmacologia , Purinas/química , Guanina/metabolismo
2.
Bioorg Med Chem ; 74: 117038, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36209571

RESUMO

Phosphate groups play essential roles in biological processes, including retention inside biological membranes. Phosphodiesters link nucleic acids, and the reversible transfer of phosphate groups is essential in energy metabolism and cell-signalling processes. Phosphorylated metabolic intermediates are known targets for metabolic and disease-related disorders, and the enzymes involved in these pathways recognize phosphate groups in their catalytic sites. Therapeutics that target these enzymes can require charged (ionic) entities to capture the binding energy of ionic substrates. Such compounds are not cell-permeable and require pro-drug strategies for efficacy as therapeutics. Protozoan parasites such as Plasmodium and Trypanosoma spp. are unable to synthesise purines de novo and rely on the salvage of purines from the host cell to synthesise free purine bases. Purine phosphoribosyltransfereases (PPRTases) play a crucial role for purine salvage and are potential target for drug development. Here we present attempts to design inhibitors of PPRTases that are non-ionic and show affinity for the nucleotide 5'-phosphate binding site. Inhibitor design was based on known potent ionic inhibitors, reported phosphate mimics and computational modelling studies.


Assuntos
Parasitos , Plasmodium , Animais , Fosfatos , Purinas/farmacologia , Purinas/metabolismo , Hipoxantina Fosforribosiltransferase
3.
Biochemistry ; 61(19): 2088-2105, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36193631

RESUMO

Chagas disease, caused by the parasitic protozoan Trypanosoma cruzi, affects over 8 million people worldwide. Current antiparasitic treatments for Chagas disease are ineffective in treating advanced, chronic stages of the disease, and are noted for their toxicity. Like most parasitic protozoa, T. cruzi is unable to synthesize purines de novo, and relies on the salvage of preformed purines from the host. Hypoxanthine-guanine phosphoribosyltransferases (HGPRTs) are enzymes that are critical for the salvage of preformed purines, catalyzing the formation of inosine monophosphate (IMP) and guanosine monophosphate (GMP) from the nucleobases hypoxanthine and guanine, respectively. Due to the central role of HGPRTs in purine salvage, these enzymes are promising targets for the development of new treatment methods for Chagas disease. In this study, we characterized two gene products in the T. cruzi CL Brener strain that encodes enzymes with functionally identical HGPRT activities in vitro: TcA (TcCLB.509693.70) and TcC (TcCLB.506457.30). The TcC isozyme was kinetically characterized to reveal mechanistic details on catalysis, including identification of the rate-limiting step(s) of catalysis. Furthermore, we identified and characterized inhibitors of T. cruzi HGPRTs originally developed as transition-state analogue inhibitors (TSAIs) of Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase (PfHGXPRT), where the most potent compound bound to T. cruzi HGPRT with low nanomolar affinity. Our results validated the repurposing of TSAIs to serve as selective inhibitors for orthologous molecular targets, where primary and secondary structures as well as putatively common chemical mechanisms are conserved.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Antiparasitários , Guanina/metabolismo , Guanosina Monofosfato , Humanos , Hipoxantina Fosforribosiltransferase/química , Hipoxantina Fosforribosiltransferase/genética , Hipoxantina Fosforribosiltransferase/metabolismo , Inosina Monofosfato , Isoenzimas , Purinas/metabolismo , Purinas/farmacologia
4.
Front Chem ; 10: 867928, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860632

RESUMO

Cysteine proteases comprise an important class of drug targets, especially for infectious diseases such as Chagas disease (cruzain) and COVID-19 (3CL protease, cathepsin L). Peptide aldehydes have proven to be potent inhibitors for all of these proteases. However, the intrinsic, high electrophilicity of the aldehyde group is associated with safety concerns and metabolic instability, limiting the use of aldehyde inhibitors as drugs. We have developed a novel class of compounds, self-masked aldehyde inhibitors (SMAIs) which are based on the dipeptide aldehyde inhibitor (Cbz-Phe-Phe-CHO, 1), for which the P1 Phe group contains a 1'-hydroxy group, effectively, an o-tyrosinyl aldehyde (Cbz-Phe-o-Tyr-CHO, 2; (Li et al. (2021) J. Med. Chem. 64, 11,267-11,287)). Compound 2 and other SMAIs exist in aqueous mixtures as stable δ-lactols, and apparent catalysis by the cysteine protease cruzain, the major cysteine protease of Trypanosoma cruzi, results in the opening of the lactol ring to afford the aldehydes which then form reversible thiohemiacetals with the enzyme. These SMAIs are also potent, time-dependent inhibitors of human cathepsin L (K i = 11-60 nM), an enzyme which shares 36% amino acid identity with cruzain. As inactivators of cathepsin L have recently been shown to be potent anti-SARS-CoV-2 agents in infected mammalian cells (Mellott et al. (2021) ACS Chem. Biol. 16, 642-650), we evaluated SMAIs in VeroE6 and A549/ACE2 cells infected with SARS-CoV-2. These SMAIs demonstrated potent anti-SARS-CoV-2 activity with values of EC50 = 2-8 µM. We also synthesized pro-drug forms of the SMAIs in which the hydroxyl groups of the lactols were O-acylated. Such pro-drug SMAIs resulted in significantly enhanced anti-SARS-CoV-2 activity (EC50 = 0.3-0.6 µM), demonstrating that the O-acylated-SMAIs afforded a level of stability within infected cells, and are likely converted to SMAIs by the action of cellular esterases. Lastly, we prepared and characterized an SMAI in which the sidechain adjacent to the terminal aldehyde is a 2-pyridonyl-alanine group, a mimic of both phenylalanine and glutamine. This compound (9) inhibited both cathepsin L and 3CL protease at low nanomolar concentrations, and also exerted anti-CoV-2 activity in an infected human cell line.

5.
PLoS Negl Trop Dis ; 16(2): e0009926, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35104286

RESUMO

Human African Trypanosomiasis (HAT), also known as sleeping sickness, is a Neglected Tropical Disease endemic to 36 African countries, with approximately 70 million people currently at risk for infection. Current therapeutics are suboptimal due to toxicity, adverse side effects, and emerging resistance. Thus, both effective and affordable treatments are urgently needed. The causative agent of HAT is the protozoan Trypanosoma brucei ssp. Annotation of its genome confirms previous observations that T. brucei is a purine auxotroph. Incapable of de novo purine synthesis, these protozoan parasites rely on purine phosphoribosyltransferases to salvage purines from their hosts for the synthesis of purine monophosphates. Complete and accurate genome annotations in combination with the identification and characterization of the catalytic activity of purine salvage enzymes enables the development of target-specific therapies in addition to providing a deeper understanding of purine metabolism in T. brucei. In trypanosomes, purine phosphoribosyltransferases represent promising drug targets due to their essential and central role in purine salvage. Enzymes involved in adenine and adenosine salvage, such as adenine phosphoribosyltransferases (APRTs, EC 2.4.2.7), are of particular interest for their potential role in the activation of adenine and adenosine-based pro-drugs. Analysis of the T. brucei genome shows two putative aprt genes: APRT1 (Tb927.7.1780) and APRT2 (Tb927.7.1790). Here we report studies of the catalytic activity of each putative APRT, revealing that of the two T. brucei putative APRTs, only APRT1 is kinetically active, thereby signifying a genomic misannotation of Tb927.7.1790 (putative APRT2). Reliable genome annotation is necessary to establish potential drug targets and identify enzymes involved in adenine and adenosine-based pro-drug activation.


Assuntos
Adenina Fosforribosiltransferase/genética , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/genética , Adenina Fosforribosiltransferase/metabolismo , Escherichia coli , Isoformas de Proteínas , Proteínas de Protozoários/metabolismo , Purinas/metabolismo , Saccharomycetales , Trypanosoma brucei brucei/metabolismo
6.
J Med Chem ; 65(4): 2956-2970, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-34730959

RESUMO

Cathepsin L is a key host cysteine protease utilized by coronaviruses for cell entry and is a promising drug target for novel antivirals against SARS-CoV-2. The marine natural product gallinamide A and several synthetic analogues were identified as potent inhibitors of cathepsin L with IC50 values in the picomolar range. Lead molecules possessed selectivity over other cathepsins and alternative host proteases involved in viral entry. Gallinamide A directly interacted with cathepsin L in cells and, together with two lead analogues, potently inhibited SARS-CoV-2 infection in vitro, with EC50 values in the nanomolar range. Reduced antiviral activity was observed in cells overexpressing transmembrane protease, serine 2 (TMPRSS2); however, a synergistic improvement in antiviral activity was achieved when combined with a TMPRSS2 inhibitor. These data highlight the potential of cathepsin L as a COVID-19 drug target as well as the likely need to inhibit multiple routes of viral entry to achieve efficacy.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Antivirais/farmacologia , Produtos Biológicos/farmacologia , Tratamento Farmacológico da COVID-19 , Catepsina L/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , SARS-CoV-2/efeitos dos fármacos , Células A549 , Animais , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/química , Antivirais/síntese química , Antivirais/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , COVID-19/metabolismo , Catepsina L/metabolismo , Chlorocebus aethiops , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/química , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Conformação Molecular , Proteômica , Relação Estrutura-Atividade , Células Vero
7.
J Am Chem Soc ; 143(42): 17666-17676, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34664502

RESUMO

The isocitrate lyase paralogs of Mycobacterium tuberculosis (ICL1 and 2) are essential for mycobacterial persistence and constitute targets for the development of antituberculosis agents. We report that (2R,3S)-2-hydroxy-3-(nitromethyl)succinic acid (5-NIC) undergoes apparent retro-aldol cleavage as catalyzed by ICL1 to produce glyoxylate and 3-nitropropionic acid (3-NP), the latter of which is a covalent-inactivating agent of ICL1. Kinetic analysis of this reaction identified that 5-NIC serves as a robust and efficient mechanism-based inactivator of ICL1 (kinact/KI = (1.3 ± 0.1) × 103 M-1 s-1) with a partition ratio <1. Using enzyme kinetics, mass spectrometry, and X-ray crystallography, we identified that the reaction of the 5-NIC-derived 3-NP with the Cys191 thiolate of ICL1 results in formation of an ICL1-thiohydroxamate adduct as predicted. One aspect of the design of 5-NIC was to lower its overall charge compared to isocitrate to assist with cell permeability. Accordingly, the absence of the third carboxylate group will simplify the synthesis of pro-drug forms of 5-NIC for characterization in cell-infection models of M. tuberculosis.


Assuntos
Inibidores Enzimáticos/química , Isocitrato Liase/antagonistas & inibidores , Mycobacterium tuberculosis/enzimologia , Succinatos/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Glioxilatos/química , Glioxilatos/metabolismo , Isocitrato Liase/química , Isocitrato Liase/metabolismo , Cinética , Modelos Químicos , Nitrocompostos/química , Nitrocompostos/metabolismo , Propionatos/química , Propionatos/metabolismo , Ligação Proteica , Succinatos/síntese química , Succinatos/metabolismo
8.
Chem Commun (Camb) ; 57(67): 8352-8355, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34337637

RESUMO

By repurposing DNICs designed for other medicinal purposes, the possibility of protease inhibition was investigated in silico using AutoDock 4.2.6 (AD4) and in vitro via a FRET protease assay. AD4 was validated as a predictive computational tool for coordinatively unsaturated DNIC binding using the only known crystal structure of a protein-bound DNIC, PDB- (calculation RMSD = 1.77). From the in silico data the dimeric DNICs TGTA-RRE, [(µ-S-TGTA)Fe(NO)2]2 (TGTA = 1-thio-ß-d-glucose tetraacetate) and TG-RRE, [(µ-S-TG)Fe(NO)2]2 (TG = 1-thio-ß-d-glucose) were identified as promising leads for inhibition via coordinative inhibition at Cys-145 of the SARS-CoV-2 Main Protease (SC2Mpro). In vitro studies indicate inhibition of protease activity upon DNIC treatment, with an IC50 of 38 ± 2 µM for TGTA-RRE and 33 ± 2 µM for TG-RRE. This study presents a simple computational method for predicting DNIC-protein interactions; the in vitro study is consistent with in silico leads.


Assuntos
Inibidores Enzimáticos/farmacologia , Ferro/farmacologia , Óxidos de Nitrogênio/farmacologia , Peptídeo Hidrolases/metabolismo , SARS-CoV-2/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Humanos , Ferro/química , Modelos Moleculares , Estrutura Molecular , Óxidos de Nitrogênio/química , SARS-CoV-2/enzimologia
9.
J Med Chem ; 64(15): 11267-11287, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34288674

RESUMO

Cysteine proteases comprise an important class of drug targets, especially for infectious diseases such as Chagas disease (cruzain) and COVID-19 (3CL protease, cathepsin L). Peptide aldehydes have proven to be potent inhibitors for all of these proteases. However, the intrinsic, high electrophilicity of the aldehyde group is associated with safety concerns and metabolic instability, limiting the use of aldehyde inhibitors as drugs. We have developed a novel class of self-masked aldehyde inhibitors (SMAIs) for cruzain, the major cysteine protease of the causative agent of Chagas disease-Trypanosoma cruzi. These SMAIs exerted potent, reversible inhibition of cruzain (Ki* = 18-350 nM) while apparently protecting the free aldehyde in cell-based assays. We synthesized prodrugs of the SMAIs that could potentially improve their pharmacokinetic properties. We also elucidated the kinetic and chemical mechanism of SMAIs and applied this strategy to the design of anti-SARS-CoV-2 inhibitors.


Assuntos
Aldeídos/química , Tratamento Farmacológico da COVID-19 , Doença de Chagas/tratamento farmacológico , Inibidores de Cisteína Proteinase/uso terapêutico , SARS-CoV-2/enzimologia , Trypanosoma cruzi/enzimologia , Aldeídos/metabolismo , Aldeídos/farmacologia , Catepsina L/antagonistas & inibidores , Catepsina L/metabolismo , Cisteína Endopeptidases/metabolismo , Cisteína Proteases/metabolismo , Inibidores de Cisteína Proteinase/química , Desenho de Fármacos , Humanos , Cinética , Modelos Moleculares , Estrutura Molecular , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , SARS-CoV-2/efeitos dos fármacos , Relação Estrutura-Atividade , Trypanosoma cruzi/efeitos dos fármacos
10.
ACS Chem Biol ; 16(3): 463-470, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33688722

RESUMO

The isocitrate lyases (ICL1/2) are essential enzymes of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis. At present, no ICL1/2 inhibitors have progressed to clinical evaluation, despite extensive drug discovery efforts. Herein, we surveyed succinate analogs against ICL1 and found that dicarboxylic acids constrained in their synperiplanar conformations, such as maleic acid, comprise uncompetitive inhibitors of ICL1 and inhibit more potently than their trans-isomers. From this, we identified cis-2,3 epoxysuccinic acid (cis-EpS) as a selective, irreversible covalent inactivator of Mtb ICL1 (kinact/Kinact= (5.0 ± 1.4) × 104 M-1 s-1; Kinact = 200 ± 50 nM), the most potent inactivator of ICL1 yet characterized. Crystallographic and mass spectrometric analysis demonstrated that Cys191 of ICL1 was S-malylated by cis-EpS, and a crystallographic "snapshot" of inactivation lent insight into the chemical mechanism of this inactivation. Proteomic analysis of E. coli lysates showed that cis-EpS selectively labeled plasmid-expressed Mtb ICL1. Consistently, cis-EpS, but not its trans-isomer, inhibited the growth of Mtb under conditions in which ICL function is essential. These findings encourage the development of analogs of cis-2,3-epoxysuccinate as antituberculosis agents.


Assuntos
Antituberculosos/química , Inibidores Enzimáticos/química , Isocitrato Liase/antagonistas & inibidores , Mycobacterium tuberculosis/enzimologia , Succinatos/química , Tuberculose/tratamento farmacológico , Antituberculosos/metabolismo , Descoberta de Drogas , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/metabolismo , Escherichia coli/metabolismo , Glicolatos/química , Glioxilatos/química , Humanos , Isomerismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Proteômica , Succinatos/metabolismo , Termodinâmica
11.
ACS Chem Biol ; 16(4): 642-650, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33787221

RESUMO

Host-cell cysteine proteases play an essential role in the processing of the viral spike protein of SARS coronaviruses. K777, an irreversible, covalent inactivator of cysteine proteases that has recently completed phase 1 clinical trials, reduced SARS-CoV-2 viral infectivity in several host cells: Vero E6 (EC50< 74 nM), HeLa/ACE2 (4 nM), Caco-2 (EC90 = 4.3 µM), and A549/ACE2 (<80 nM). Infectivity of Calu-3 cells depended on the cell line assayed. If Calu-3/2B4 was used, EC50 was 7 nM, but in the ATCC Calu-3 cell line without ACE2 enrichment, EC50 was >10 µM. There was no toxicity to any of the host cell lines at 10-100 µM K777 concentration. Kinetic analysis confirmed that K777 was a potent inhibitor of human cathepsin L, whereas no inhibition of the SARS-CoV-2 cysteine proteases (papain-like and 3CL-like protease) was observed. Treatment of Vero E6 cells with a propargyl derivative of K777 as an activity-based probe identified human cathepsin B and cathepsin L as the intracellular targets of this molecule in both infected and uninfected Vero E6 cells. However, cleavage of the SARS-CoV-2 spike protein was only carried out by cathepsin L. This cleavage was blocked by K777 and occurred in the S1 domain of the SARS-CoV-2 spike protein, a different site from that previously observed for the SARS-CoV-1 spike protein. These data support the hypothesis that the antiviral activity of K777 is mediated through inhibition of the activity of host cathepsin L and subsequent loss of cathepsin L-mediated viral spike protein processing.


Assuntos
Antivirais/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Fenilalanina/farmacologia , Piperazinas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Compostos de Tosil/farmacologia , Animais , Catepsina L/antagonistas & inibidores , Catepsina L/metabolismo , Linhagem Celular Tumoral , Chlorocebus aethiops , Humanos , Testes de Sensibilidade Microbiana , Domínios Proteicos , Proteólise , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Internalização do Vírus/efeitos dos fármacos
12.
J Pharmacol Exp Ther ; 376(1): 106-117, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33144389

RESUMO

The active form of transforming growth factor-ß1 (TGF-ß1) plays a key role in potentiating fibrosis. TGF-ß1 is sequestered in an inactive state by a latency-associated glycopeptide (LAP). Sialidases (also called neuraminidases (NEU)) cleave terminal sialic acids from glycoconjugates. The sialidase NEU3 is upregulated in fibrosis, and mice lacking Neu3 show attenuated bleomycin-induced increases in active TGF-ß1 in the lungs and attenuated pulmonary fibrosis. Here we observe that recombinant human NEU3 upregulates active human TGF-ß1 by releasing active TGF-ß1 from its latent inactive form by desialylating LAP. Based on the proposed mechanism of action of NEU3, we hypothesized that compounds with a ring structure resembling picolinic acid might be transition state analogs and thus possible NEU3 inhibitors. Some compounds in this class showed nanomolar IC50 for recombinant human NEU3 releasing active human TGF-ß1 from the latent inactive form. The compounds given as daily 0.1-1-mg/kg injections starting at day 10 strongly attenuated lung inflammation, lung TGF-ß1 upregulation, and pulmonary fibrosis at day 21 in a mouse bleomycin model of pulmonary fibrosis. These results suggest that NEU3 participates in fibrosis by desialylating LAP and releasing TGF-ß1 and that the new class of NEU3 inhibitors are potential therapeutics for fibrosis. SIGNIFICANCE STATEMENT: The extracellular sialidase NEU3 appears to be a key driver of pulmonary fibrosis. The significance of this report is that 1) we show the mechanism (NEU3 desialylates the latency-associated glycopeptide protein that keeps the profibrotic cytokine transforming growth factor-ß1 (TGF-ß1) in an inactive state, causing active TGF-ß1 release), 2) we then use the predicted NEU3 mechanism to identify nM IC50 NEU3 inhibitors, and 3) these new NEU3 inhibitors are potent therapeutics in a mouse model of pulmonary fibrosis.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Neuraminidase/antagonistas & inibidores , Fibrose Pulmonar/tratamento farmacológico , Fator de Crescimento Transformador beta/metabolismo , Animais , Células Cultivadas , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuraminidase/genética , Neuraminidase/metabolismo , Fibrose Pulmonar/metabolismo , Ácidos Siálicos/metabolismo , Regulação para Cima
13.
bioRxiv ; 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33140046

RESUMO

K777 is a di-peptide analog that contains an electrophilic vinyl-sulfone moiety and is a potent, covalent inactivator of cathepsins. Vero E6, HeLa/ACE2, Caco-2, A549/ACE2, and Calu-3, cells were exposed to SARS-CoV-2, and then treated with K777. K777 reduced viral infectivity with EC50 values of inhibition of viral infection of: 74 nM for Vero E6, <80 nM for A549/ACE2, and 4 nM for HeLa/ACE2 cells. In contrast, Calu-3 and Caco-2 cells had EC50 values in the low micromolar range. No toxicity of K777 was observed for any of the host cells at 10-100 µM inhibitor. K777 did not inhibit activity of the papain-like cysteine protease and 3CL cysteine protease, encoded by SARS-CoV-2 at concentrations of ≤ 100 µM. These results suggested that K777 exerts its potent anti-viral activity by inactivation of mammalian cysteine proteases which are essential to viral infectivity. Using a propargyl derivative of K777 as an activity-based probe, K777 selectively targeted cathepsin B and cathepsin L in Vero E6 cells. However only cathepsin L cleaved the SARS-CoV-2 spike protein and K777 blocked this proteolysis. The site of spike protein cleavage by cathepsin L was in the S1 domain of SARS-CoV-2 , differing from the cleavage site observed in the SARS CoV-1 spike protein. These data support the hypothesis that the antiviral activity of K777 is mediated through inhibition of the activity of host cathepsin L and subsequent loss of viral spike protein processing.

14.
J Med Chem ; 63(6): 3298-3316, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32125159

RESUMO

Cruzain, an essential cysteine protease of the parasitic protozoan, Trypanosoma cruzi, is an important drug target for Chagas disease. We describe here a new series of reversible but time-dependent inhibitors of cruzain, composed of a dipeptide scaffold appended to vinyl heterocycles meant to provide replacements for the irreversible reactive "warheads" of vinyl sulfone inactivators of cruzain. Peptidomimetic vinyl heterocyclic inhibitors (PVHIs) containing Cbz-Phe-Phe/homoPhe scaffolds with vinyl-2-pyrimidine, vinyl-2-pyridine, and vinyl-2-(N-methyl)-pyridine groups conferred reversible, time-dependent inhibition of cruzain (Ki* = 0.1-0.4 µM). These cruzain inhibitors exhibited moderate to excellent selectivity versus human cathepsins B, L, and S and showed no apparent toxicity to human cells but were effective in cell cultures of Trypanosoma brucei brucei (EC50 = 1-15 µM) and eliminated T. cruzi in infected murine cardiomyoblasts (EC50 = 5-8 µM). PVHIs represent a new class of cruzain inhibitors that could progress to viable candidate compounds to treat Chagas disease and human sleeping sickness.


Assuntos
Inibidores de Cisteína Proteinase/farmacologia , Peptidomiméticos/farmacologia , Proteínas de Protozoários/antagonistas & inibidores , Tripanossomicidas/farmacologia , Compostos de Vinila/farmacologia , Animais , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/metabolismo , Desenho de Fármacos , Ensaios Enzimáticos , Humanos , Cinética , Camundongos , Simulação de Acoplamento Molecular , Mioblastos Cardíacos/efeitos dos fármacos , Peptidomiméticos/síntese química , Peptidomiméticos/metabolismo , Ligação Proteica , Proteínas de Protozoários/metabolismo , Piridinas/síntese química , Piridinas/metabolismo , Piridinas/farmacologia , Pirimidinas/síntese química , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Tripanossomicidas/síntese química , Tripanossomicidas/metabolismo , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Compostos de Vinila/síntese química , Compostos de Vinila/metabolismo
15.
bioRxiv ; 2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33398273

RESUMO

The emergence of SARS-CoV-2 in late 2019, and the subsequent COVID-19 pandemic, has led to substantial mortality, together with mass global disruption. There is an urgent need for novel antiviral drugs for therapeutic or prophylactic application. Cathepsin L is a key host cysteine protease utilized by coronaviruses for cell entry and is recognized as a promising drug target. The marine natural product, gallinamide A and several synthetic analogues, were identified as potent inhibitors of cathepsin L activity with IC 50 values in the picomolar range. Lead molecules possessed selectivity over cathepsin B and other related human cathepsin proteases and did not exhibit inhibitory activity against viral proteases Mpro and PLpro. We demonstrate that gallinamide A and two lead analogues potently inhibit SARS-CoV-2 infection in vitro , with EC 50 values in the nanomolar range, thus further highlighting the potential of cathepsin L as a COVID-19 antiviral drug target.

16.
Biochemistry ; 58(33): 3475-3476, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31397555
17.
J Med Chem ; 62(13): 6146-6162, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31184893

RESUMO

Targeted covalent inhibitors (TCIs) have attracted growing attention from the pharmaceutical industry in recent decades because they have potential advantages in terms of efficacy, selectivity, and safety. TCIs have recently evolved into a new version with reversibility that can be systematically modulated. This feature may diminish the risk of haptenization and help optimize the drug-target residence time as needed. The enteroviral 3C protease (3Cpro) is a valuable therapeutic target, but the development of 3Cpro inhibitors is far from satisfactory. Therefore, we aimed to apply a reversible TCI approach to the design of novel 3Cpro inhibitors. The introduction of various substituents onto the α-carbon of classical Michael acceptors yielded inhibitors bearing several classes of warheads. Using steady-state kinetics and biomolecular mass spectrometry, we confirmed the mode of reversible covalent inhibition and elucidated the mechanism by which the potency and reversibility were affected by electronic and steric factors. This research produced several potent inhibitors with good selectivity and suitable reversibility; moreover, it validated the reversible TCI approach in the field of viral infection, suggesting broader applications in the design of reversible covalent inhibitors for other proteases.


Assuntos
Acrilamidas/química , Antivirais/química , Cianoacrilatos/química , Enterovirus Humano A/enzimologia , Inibidores Enzimáticos/química , Proteínas Virais/antagonistas & inibidores , Proteases Virais 3C , Acrilamidas/síntese química , Antivirais/síntese química , Cianoacrilatos/síntese química , Cisteína Endopeptidases , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Estrutura Molecular
18.
Biochemistry ; 57(22): 3176-3190, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29336553

RESUMO

Cruzain, an important drug target for Chagas disease, is a member of clan CA of the cysteine proteases. Understanding the catalytic mechanism of cruzain is vital to the design of new inhibitors. To this end, we have determined pH-rate profiles for substrates and affinity agents and solvent kinetic isotope effects in pre-steady-state and steady-state modes using three substrates: Cbz-Phe-Arg-AMC, Cbz-Arg-Arg-AMC, and Cbz-Arg-Ala-AMC. The pH-rate profile of kcat/ Km for Cbz-Arg-Arg-AMC indicated p K1 = 6.6 (unprotonated) and p K2 ∼ 9.6 (protonated) groups were required for catalysis. The temperature dependence of the p K = 6.2-6.6 group exhibited a Δ Hion value of 8.4 kcal/mol, typical of histidine. The pH-rate profile of inactivation by iodoacetamide confirmed that the catalytic cysteine possesses a p Ka of 9.8. Normal solvent kinetic isotope effects were observed for both D2O kcat (1.6-2.1) and D2O kcat/ Km (1.1-1.4) for all three substrates. Pre-steady-state kinetics revealed exponential bursts of AMC production for Cbz-Phe-Arg-AMC and Cbz-Arg-Arg-AMC, but not for Cbz-Arg-Ala-AMC. The overall solvent isotope effect on kcat can be attributed to the solvent isotope effect on the deacylation step. Our results suggest that cruzain is unique among papain-like cysteine proteases in that the catalytic cysteine and histidine have neutral charges in the free enzyme. The generation of the active thiolate of the catalytic cysteine is likely preceded (and possibly triggered) by a ligand-induced conformational change, which could bring the catalytic dyad into the proximity to effect proton transfer.


Assuntos
Cisteína Endopeptidases/química , Proteínas de Protozoários/química , Trypanosoma cruzi/enzimologia , Caspases , Catálise , Cisteína/metabolismo , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/fisiologia , Histidina/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Prótons , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/fisiologia , Solventes , Especificidade por Substrato , Trypanosoma cruzi/metabolismo
19.
Nat Rev Drug Discov ; 17(2): 115-132, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29192286

RESUMO

Given the therapeutic and commercial success of small-molecule enzyme inhibitors, as exemplified by kinase inhibitors in oncology, a major focus of current drug-discovery and development efforts is on enzyme targets. Understanding the course of an enzyme-catalysed reaction can help to conceptualize different types of inhibitor and to inform the design of screens to identify desired mechanisms. Exploiting this information allows the thorough evaluation of diverse compounds, providing the knowledge required to efficiently optimize leads towards differentiated candidate drugs. This review highlights the rationale for conducting high-quality mechanistic enzymology studies and considers the added value in combining such studies with orthogonal biophysical methods.

20.
Nat Rev Drug Discov ; 17(1): 78, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29242615

RESUMO

This corrects the article DOI: 10.1038/nrd.2017.219.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...