Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780359

RESUMO

Organic-inorganic hybrid metal halides have unique optical and electronic properties, which are advantageous in the study of nonlinear optical materials. To investigate the effect of stereoactive lone pair electrons and the induction of organic cations on the structure of hybrid antimony(III) halides on nonlinear optics, we synthesize two noncentrosymmetric hybrid antimony(III)-based halide single crystals (TMA)3Sb2X9 (TMA = NH(CH3)3+, X = Cl, Br) by a room-temperature slow evaporation method, and their single-crystal structures, phase transition, X-ray photoelectron spectroscopy, and energy-band structure calculations are studied. More importantly, second-harmonic generation results of (TMA)3Sb2X9 (X = Cl, Br) are about 0.7 and 0.8 × KH2PO4(KDP), respectively. Interestingly, (TMA)3Sb2Cl9 single crystals undergo a reversible structural transition from Pc (No. 7) at room temperature to P21/c (No. 14) at 400 K, while the (TMA)3Sb2Br9 single crystals belong to the noncentrosymmetric space group R3c (No. 161), which clarifies the previous results. This work not only deepens the understanding of the role in lone pair electrons and organic cations in the structural induction in antimony-based halide perovskite materials but also provides guidance for subsequent nonlinear optical explorations.

2.
ACS Appl Mater Interfaces ; 16(8): 10325-10334, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38358397

RESUMO

In modern society, the investigation of highly efficient photoluminescent bulk materials with excitation-induced tunable multicolor luminescence and multiexciton generation (MEG) is of great significance to information security and the application of optoelectronic devices. In this study, two bulk Cu-based halide crystals of (C4H10NO)4Cu2Br5·Br and (C4H10NO)4Cu2I5·I·H2O, respectively, with one-dimensional structures were grown by a solvent evaporation method. Unexpectedly, (C4H10NO)4Cu2I5·I·H2O displayed excitation-induced tunable dual-color luminescence; one band is a brilliant green-yellow emission centered at 547 nm with a high photoluminescence quantum yield (PLQY) of up to 169.67%, and the other is a red emission at 695 nm with a PLQY of 75.76%. Just as importantly, (C4H10NO)4Cu2Br5·Br exhibits a strong broadband green-yellow emission at 561 nm under broad band excitation ranging from 252 to 350 nm, a long PL decay lifetime of 106.9 µs, and an ultrahigh PLQY of 198.22%. These materials represent the first two examples of 1D bulk crystals and Cu(I)-based halides that have a PLQY exceeding 100%. Combining the unusual luminescence characteristics with theoretical calculations reveals that MEG contributes to the green-yellow emission with ultrahigh PLQY > 100%, and that the red emission can be ascribed to [Cu2I5]3- cluster-centered emission. Additionally, an information encryption method was designed based on the Morse Code. The high luminescence characteristics of LED devices fabricated using the (C4H10NO)4Cu2Br5·Br and (C4H10NO)4Cu2I5·I·H2O crystals appear to lead to promising applications in solid-state lighting. This work extends the catalog of high-performance luminescent materials and also promotes application prospects of low-dimensional copper-based halides in optoelectronics.

3.
Inorg Chem ; 63(6): 3173-3180, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38301606

RESUMO

Currently, organic-inorganic hybrid cuprous-based halides are receiving substantial attention for their eco-friendliness, distinctive structures, and outstanding photophysical properties. Nevertheless, most of the reported cuprous-based halides demand deep ultraviolet excitation with a narrow excitation range that can meet the commercial requirement. Herein, zero-dimensional (0D) cuprous-based halide (C4H10N)4Cu4I8 single crystals (SCs) were synthesized, with an ultrabroad band excitation ranging 260-450 nm and a greenish-yellow emission band peaking at 560 nm. Excitingly, (C4H10N)4Cu4I8 also features a large Stokes shift of 300 nm, a high photoluminescence quantum yield (PLQY) of up to 84.66%, and a long lifetime of 137 µs. Furthermore, density functional theory calculations were performed to explore the relationship between structure and photophysical properties, and the photoluminescence performance of (C4H10N)4Cu4I8 originates from the electron interactions in [Cu2I4]2- clusters. Taking advantage of broad band excitation and excellent photoluminescent performances, a high luminescence characteristic UV-pumped light-emitting diode (LED) device with remarkable color stability was fabricated by employing the as-synthesized (C4H10N)4Cu4I8 SCs, which present the promising applications of low-dimensional cuprous-based halides in solid-state lighting.

4.
Mol Genet Genomic Med ; 12(1): e2334, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38069551

RESUMO

BACKGROUND: MSX1 (OMIM #142983) is crucial to normal dental development, and variants in MSX1 are associated with dental anomalies. The objective of this study was to characterize the pathogenicity of novel MSX1 variants in Chinese families with non-syndromic oligodontia (NSO). METHODS: Genomic DNA was extracted from individuals representing 35 families with non-syndromic oligodontia and was analyzed by Sanger sequencing and whole-exome sequencing. Pathogenic variants were screened via analyses involving PolyPhen-2, Sorting-Intolerant from Tolerant, and MutationTaster, and conservative analysis of variants. Patterns of MSX1-related NSO were analyzed. MSX1 structural changes suggested functional consequences in vitro. RESULTS: Three previously unreported MSX1 heterozygous variants were identified: one insertion variant (c.576_577insTAG; p.Gln193*) and two missense variants (c. 871T>C; p.Tyr291His and c. 644A>C; p.Gln215Pro). Immunofluorescence analysis revealed abnormal subcellular localization of the p.Gln193* MSX1 variant. In addition, we found that these MSX1 variants likely lead to the loss of second premolars. CONCLUSION: Three novel MSX1 variants were identified in Chinese Han families with NSO, expanding the MSX1 variant spectrum and presenting a genetic origin for the pathogenesis detected in patients and their families.


Assuntos
Anodontia , Fator de Transcrição MSX1 , Humanos , Anodontia/genética , China , Heterozigoto , Fator de Transcrição MSX1/genética , Mutação de Sentido Incorreto
5.
Inorg Chem ; 63(1): 803-811, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38113036

RESUMO

Zero-dimensional (0D) organic-inorganic hybrid halides present many fascinating photophysical properties for promising optoelectronic applications such as light-emitting diodes (LEDs), X-ray imaging, photodetectors, and anticounterfeiting. Herein, a centimeter-sized single crystal (C6H10N2)2MnCl6·2H2O with a 0D perovskite structure was obtained via a solvent evaporation method. A bright red emission at 618 nm with a larger Stokes shift of more than 300 nm and a long fluorescence lifetime of 6.21 ms were measured. Notably, a reversible PL switching from red emission to nonluminescence has been presented in the cycles of heating-cooling processes from RT to 100 °C. Furthermore, the temperature-induced luminescence shows a quick recovery after 20 conversion cycles, exhibiting excellent stability and temperature sensing. According to the structural and theoretical analyses, the temperature-induced luminescence is primarily due to hydrogen-bonding interactions between (MnCl6)4- and H2O molecules. Particularly, a temperature anticounterfeiting application has been designed based on its reversible temperature-dependent PL switching. Importantly, the ultraviolet-pumped LEDs fabricated by (C6H10N2)2MnCl6·2H2O single crystals are perfectly achieved. Anyway, this work clearly demonstrates that 0D Mn-based perovskite with temperature-dependent PL switching greatly extends its potential applications in electro-optical display, temperature sensing, and anticounterfeiting devices.

6.
Opt Lett ; 48(24): 6428-6431, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099765

RESUMO

Fizeau wavelength measurement plays an important role in the fields of laser technology, optical communication, and optical metrology. The accuracy of the traditional multistage Fizeau wavemeter is limited owing to the degradation of the stripe symmetry and finesse caused by variations in the cavity length. Herein, we propose a virtual Fizeau cavity (VFC) based on the principle of phase difference to address this issue. The principle analysis and simulation of this measurement system are presented, along with experiments that verified the feasibility and performance of the VFC method. The wavelength measurement accuracy of this system is superior to 60 MHz in the 350-1100 nm wavelength range. The design concept of "virtual-real combined" cavities first proposed in this paper to our knowledge introduces possibilities for the development of high-accuracy Fizeau wavelength measurements.

7.
Adv Mater ; 35(48): e2307703, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37812077

RESUMO

In the field of active-matrix organic light emitting display (AMOLED), large-size and ultra-high-definition AMOLED applications have escalated the demand for the integration density of driver chips. However, as Moore's Law approaches the limit, the traditional technology of improving integration density that relies on scaling down device dimension is facing a huge challenge. Thus, developing a multifunctional and highly integrated device is a promising route for improving the integration density of pixel circuits. Here, a novel nonvolatile memory ferroelectric organic light-emitting transistor (Fe-OLET) device which integrates the switching capability, light-emitting capability and nonvolatile memory function into a single device is reported. The nonvolatile memory function of Fe-OLET is achieved through the remnant polarization property of ferroelectric polymer, enabling the device to maintain light emission at zero gate bias. The reliable nonvolatile memory operations are also demonstrated. The proof-of-concept device optimized through interfacial modification approach exhibits 20 times improved field-effect mobility and five times increased luminance. The integration of nonvolatile memory, switching and light-emitting capabilities within Fe-OLET provides a promising internal-storage-driving paradigm, thus creating a new pathway for deploying storage capacitor-free circuitry to improve the pixel aperture ratio and the integration density of circuits toward the on-chip advanced display applications.

8.
Inorg Chem ; 62(43): 17931-17939, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37831425

RESUMO

Mn(II)-based hybrid halides have attracted great attention from the optoelectronic fields due to their nontoxicity, special luminescent properties, and structural diversity. Here, two novel organic-inorganic hybrid Mn(II)-based halide single crystals (1-mpip)MnCl4·3H2O and (1-mpip)2MnCl6 (1-mpip = 1-methylpiperazinium, C5H14N2+) were grown by a slow evaporation method in ambient atmosphere. Interestingly, (1-mpip)2MnCl6 single crystals exhibit the green emission with a PL peak at 522 nm and photoluminescence quantum yields (PLQYs) of ≈5.4%, whereas (1-mpip)MnCl4·3H2O single crystals exhibit no emission characteristics. More importantly, there exists a thermal-induced phase transformation from (1-mpip)MnCl4·3H2O to emissive (1-mpip)2MnCl6 at 372 K. Moreover, a reversible luminescent conversion between (1-mpip)MnCl4·3H2O and (1-mpip)2MnCl6 was simply achieved when heated to 383 K and placed in a humid environment or sprayed with water. This work not only deepens the understanding of the thermal-induced phase transformation and humidity-sensitive luminescent conversion of hybrid Mn(II)-based halides, but also provides a guidance for thermal and humidity sensing and anticounterfeiting applications of these hybrid materials.

9.
Biomater Sci ; 11(18): 6357-6372, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37584200

RESUMO

Maxillofacial bone defect repair and regeneration remains a tremendous challenge in the field of stomatology. However, the limited osteoinductivity of artificial materials and the high cost of bioactive agents restrain their clinical translation. This study aimed to construct an economical and efficient concentrated growth factor/mesoporous bioactive glass (CGF/MBG) composite scaffold for bone regeneration. The biochemical composition and biological effects of different forms of CGFs were systematically compared, and the results showed that CGF-conditioned medium effectively promoted proliferation, migration and osteogenesis of allogenic BMSCs. Gel phase CGF (gpCGF) exhibited superior bioactivity and osteoinductivity to liquid phase CGF (lpCGF) and liquid/gel mixed phase CGF (lgpCGF), and was further applied to construct CGF/MBG scaffolds. In vitro studies demonstrated that co-culture with gpCGF-conditioned medium further enhanced the biocompatibility of MBG, increasing cell adhesion and proliferation on the scaffold. On this basis, two compositing approaches to construct the scaffold by fibrin gel formation (CGF/FG/MBG) and freeze-drying (fdCGF/MBG) were applied, and the biological efficacy of CGFs was compared in vivo. In a rabbit mandibular defect model, higher osteogenic efficiency in in situ bone regeneration of CGF/FG/MBG composite scaffolds was proved, compared with fdCGF/MBG. Taken together, the CGF/FG/MBG composite scaffold is expected to be an efficient bone repairing therapy for clinical translation, and the CGF-composited scaffold using gpCGF and the fibrin gel formation method is a promising way to enhance the bioactivity and osteoinductivity of current clinical bone repairing materials, providing new thoughts on the development of future orthopedic biomaterials.


Assuntos
Osteogênese , Alicerces Teciduais , Animais , Coelhos , Alicerces Teciduais/química , Meios de Cultivo Condicionados/farmacologia , Porosidade , Regeneração Óssea , Mandíbula , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Vidro/química
10.
Arch Oral Biol ; 154: 105759, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37422997

RESUMO

OBJECTIVE: Variants in wingless-type MMTV integration site family member 10A (WNT10A) have been proposed to be the most common cause of non-syndromic oligodontia (NSO). The goal of the present study was to identify the novel WNT10A variants in Chinese families with NSO. DESIGN: Clinical data were collected from 39 families with oligodontia admitted to the Hospital of Stomatology Hebei Medical University (China) from 2016 to 2022. Whole-exome sequencing (WES) and Sanger sequencing were performed to identify WNT10A variants in three families with non-syndromic oligodontia. Amino acid conservation analysis and protein conformational analysis were conducted for the WNT10A variant. Genotype-phenotype analysis was performed on the previously reported WNT10A variants related to NSO. RESULTS: We found a novel heterozygous WNT10A variant c.1127 G>A (p.Cys376Tyr) and two reported heterozygous variants c.460 C>A (p.Leu154Met) and c.511 C>T (p.Arg171Cys). Structural modeling showed that the novel WNT10A variant was located in a highly conserved domain, which led to structural damage of WNT10A protein. In addition, we found that the phenotype of the WNT10A variants affected the maxillary second premolars, followed by the mandibular second premolars, and rarely affected the maxillary central incisor. Herein, it is the first time to report that NSO patients with WNT10A monoallele mutation carry taurodontism phenotype and 6.1% prevalence of taurodontism in WNT10A-related NSO patients. CONCLUSIONS: Our results demonstrated that the novel variant c.1127 G>A (p.Cys376Tyr) of WNT10A causes NSO. The present study expanded the known variation spectrum of WNT10A and provided valuable information for genetic counseling of families.


Assuntos
Anodontia , Anormalidades Dentárias , Humanos , Anodontia/genética , Anodontia/epidemiologia , Anormalidades Dentárias/genética , Fenótipo , Mutação , Linhagem , Proteínas Wnt/genética
11.
Adv Mater ; 35(35): e2303611, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37358067

RESUMO

Over recent years, Mn(II)-organic materials showing circularly polarized luminescence (CPL) have attracted great interest because of their eco-friendliness, cheapness, and room temperature phosphorescence. Using the helicity design strategy, herein, chiral Mn(II)-organic helical polymers are constructed featuring long-lived circularly polarized phosphorescence with exceptionally high glum and ΦPL magnitudes of 0.021% and 89%, respectively, while remaining ultrarobust toward humidity, temperature, and X-rays. Equally important, it is disclosed for the first time that the magnetic field has a remarkably high negative effect on CPL for Mn(II) materials, suppressing the CPL signal by 4.2-times at B ⃗ $\vec{B}$  = 1.6 T. Using the designed materials, UV-pumped CPL light-emitting diodes are fabricated, demonstrating enhanced optical selectivity under right- and left-handed polarization conditions. On top of all this, the reported materials display bright triboluminescence and excellent X-ray scintillation activity with a perfectly linear X-ray dose rate response up to 174 µGyair  s-1 . Overall, these observations significantly contribute to the CPL phenomenon for multi-spin compounds and promote the design of highly efficient and stable Mn(II)-based CPL emitters.

12.
BMC Oral Health ; 23(1): 30, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658579

RESUMO

BACKGROUND: Severe early childhood caries (SECC) is an inflammatory disease with complex pathology. Although changes in the oral microbiota and metabolic profile of patients with SECC have been identified, the salivary metabolites and the relationship between oral bacteria and biochemical metabolism remains unclear. We aimed to analyse alterations in the salivary microbiome and metabolome of children with SECC as well as their correlations. Accordingly, we aimed to explore potential salivary biomarkers in order to gain further insight into the pathophysiology of dental caries. METHODS: We collected 120 saliva samples from 30 children with SECC and 30 children without caries. The microbial community was identified through 16S ribosomal RNA (rRNA) gene high-throughput sequencing. Additionally, we conducted non-targeted metabolomic analysis through ultra-high-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry to determine the relative metabolite levels and their correlation with the clinical caries status. RESULTS: There was a significant between-group difference in 8 phyla and 32 genera in the microbiome. Further, metabolomic and enrichment analyses revealed significantly altered 32 salivary metabolites in children with dental caries, which involved pathways such as amino acid metabolism, pyrimidine metabolism, purine metabolism, ATP-binding cassette transporters, and cyclic adenosine monophosphate signalling pathway. Moreover, four in vivo differential metabolites (2-benzylmalate, epinephrine, 2-formaminobenzoylacetate, and 3-Indoleacrylic acid) might be jointly applied as biomarkers (area under the curve = 0.734). Furthermore, the caries status was correlated with microorganisms and metabolites. Additionally, Spearman's correlation analysis of differential microorganisms and metabolites revealed that Veillonella, Staphylococcus, Neisseria, and Porphyromonas were closely associated with differential metabolites. CONCLUSION: This study identified different microbial communities and metabolic profiles in saliva, which may be closely related to caries status. Our findings could inform future strategies for personalized caries prevention, detection, and treatment.


Assuntos
Cárie Dentária , Microbiota , Criança , Pré-Escolar , Humanos , Cárie Dentária/microbiologia , Suscetibilidade à Cárie Dentária , Saliva/química , Microbiota/genética , Metaboloma , RNA Ribossômico 16S/genética , Biomarcadores
13.
Adv Sci (Weinh) ; : e2204512, 2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36372541

RESUMO

Although perovskite wafers with a scalable size and thickness are suitable for direct X-ray detection, polycrystalline perovskite wafers have drawbacks such as the high defect density, defective grain boundaries, and low crystallinity. Herein, PbI2 -DMSO powders are introduced into the MAPbI3 wafer to facilitate crystal growth. The PbI2 powders absorb a certain amount of DMSO to form the PbI2 -DMSO powders and PbI2 -DMSO is converted back into PbI2 under heating while releasing DMSO vapor. During isostatic pressing of the MAPbI3 wafer with the PbI2 -DMSO solid additive, the released DMSO vapor facilitates in situ growth in the MAPbI3 wafer with enhanced crystallinity and reduced defect density. A dense and compact MAPbI3 wafer with a high mobility-lifetime (µτ) product of 8.70 × 10-4 cm2 V-1 is produced. The MAPbI3 -based direct X-ray detector fabricated for demonstration shows a high sensitivity of 1.58 × 104 µC Gyair-1  cm-2 and a low detection limit of 410 nGyair s-1 .

14.
Artigo em Inglês | MEDLINE | ID: mdl-36212960

RESUMO

The initiation and maintenance of AF is a complex biological process that is the ultimate manifestation of many cardiovascular diseases. And the pathogenesis of atrial fibrillation (AF) is unclear. Therefore, this study aimed to find the potential competing endogenous RNAs (ceRNAs) network and molecular dysregulation mechanism associated with AF. GSE135445, GSE2240, and GSE68475 were obtained from the Gene Expression Omnibus (GEO). Differential analysis was utilized to identify the differentially expressed mRNAs, miRNAs, and lncRNAs between AF and sinus rhythms (SR). AF-associated mRNAs and nanomaterials were screened and their biological functions and KEGG signaling pathways were identified. Nanomaterials for targeted delivery are uniquely capable of localizing the delivery of therapeutics and diagnostics to diseased tissues. The target mRNAs and target lncRNAs of differentially expressed miRNAs were identified using TargetScan and LncBase databases. Finally, we constructed the ceRNAs network and its potential molecular regulatory mechanism. We obtained 643 AF-associated mRNAs. They were significantly involved in focal adhesion and the PI3K-Akt signaling pathway. Among the 16 differentially expressed miRNAs identified, 31 differentially expressed target mRNAs, as well as 5 differentially expressed target lncRNAs were identified. Among them, we obtained 2 ceRNAs networks (hsa-miR-125a-5p and hsa-let-7a-3p). The aberrant expression of network target genes in AF mainly activated the HIF-1 signaling pathway. We speculated that the interaction pairs of miR-125a-5p and let-7a-3p with target mRNAs and target lncRNAs may be involved in AF. Our findings have a positive influence on investigating the pathogenesis of AF and identifying potential therapeutic targets.

15.
Small ; 18(31): e2202969, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35924354

RESUMO

Carbon nitride consisting of the broken π-conjugated structure (bc-CN) is designed as the emitting layer in a blue-violet light emitting diode (LED). The bc-CN is prepared by a metal-oxide (MgO) template-assisted method, in which the low reaction temperature and nano MgO jointly control the degree of polymerization to form cyano groups and broken π-conjugation in the bc-CN nanosheets (bc-CN NS) which emit intense blue-violet photoluminescence at 412 nm. The broken π-conjugated heptazine-ring structure in the bc-CN NS mitigates non-radiation energy loss and promotes the d*-LP transition. As a result, a high quantum efficiency of 73.1% is achieved. The excellent dispersing ability of the bc-CN NS enables solution-based fabrication of the light emitting diode (LED). The LED exhibits intense electroluminescence of 236 cd m-2 at 412 nm with an external quantum efficiency of 0.46%. The broken π-conjugation modulates the optical properties of the polymerized carbon nitride semiconductor giving rise to intense blue-violet electroluminescence, which is very desirable for printable and wide-color-gamut display devices.

16.
J Phys Chem Lett ; 13(11): 2567-2575, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35286088

RESUMO

Light-emitting diodes (LEDs) with the circularly polarized luminescence features have attracted attention to the promising applications ranging from solid-state lighting and displays to bioencoding and anticounterfeiting. The prerequisite of circularly polarized luminescence is highly emissive chiral materials. Here, we demonstrated that (R/S-MBA)4Cu4I8·2H2O (MBA = α-methylbenzylaminium) and acentric Gua6Cu4I10 (Gua = guanidinium) single crystals were grown on the basis of Gua3Cu2I5 by the slow evaporation method. (R/S-MBA)4Cu4I8·2H2O single crystals exhibited excellent circularly polarized luminescence (CPL) characteristics. More importantly, ultraviolet-pumped LEDs (UV-LEDs) based on (R/S-MBA)4Cu4I8·2H2O and Gua6Cu4I10 single crystals exhibit a higher optical selectivity when exposed to right-handed and left-handed circular polarization (RCP and LCP) conditions. (S-MBA)4Cu4I8·2H2O single crystals and Gua6Cu4I10 single crystals induced by the (R)-MBA cation exhibit the different polarized light intensities at PL peak positions in different λ/4 waveplate polarizer angle directions, which provides new possibilities for the further applications from 3D displays to spintronics, as well as anticounterfeiting.

17.
Appl Biochem Biotechnol ; 194(7): 3044-3065, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35334069

RESUMO

Porous carbon sphere materials have a large variety of applications in several fields due to the large surface area, adaptable porosity, and good conductivity they possess. Obtaining a steady carbon sphere using the green synthesis method remains a significant challenge. In this experiment, covalent organic frameworks (COFs) were used as a precursor and Fe3O4NPs were integrated into the precursor in order to synthesize a porous carbon sphere material using the one-step pyrolysis method. COFs have an ordered porous structure, perpetual porosity, large surface area, and low density and display good environmental tolerance. These properties make them an excellent precursor for synthesizing porous carbon sphere, which maintains good morphology at high temperatures, and it is not involved in the removal of dangerous reagent and small size restrictions during the synthesis process. In addition to the formation of a porous carbon sphere, transition metal carbon material that contains N element can be an active catalyst. The composites exhibit better activity when Fe is doped into carbon materials containing N element than that of other doped transition metals including Mn and Co. In this situation, the integration of Fe3O4NPs and N element in the COF precursor exposed the active sites of the composites and the two substances synergistically improved the electrocatalytic properties, and the composites were named Fe3O4@NPCS. The constructed Fe3O4@NPCS/GCE immunosensor was applied as a means of detecting CA19-9 antigen and presented a wide linear range from 0.00001 to 10 U/mL with a low detection limit of 2.429 µU/mL (S/N = 3). In addition, the prepared immunosensor was utilized for detecting CA19-9 antigen in the real human serum, and the recovery rates were in the range from 95.24% to 106.38%. Therefore, a porous carbon sphere prepared by COFs as a precursor can be applied for the detection of CA19-9 antigen in real samples, which could be an excellent strategy for CA19-9 antigen detection and could potentially promote the development of COF materials in various electrochemical fields.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Nanosferas , Técnicas Biossensoriais/métodos , Antígeno CA-19-9 , Carbono/química , Humanos , Imunoensaio/métodos , Estruturas Metalorgânicas/química
18.
Anal Chim Acta ; 1196: 339545, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35151408

RESUMO

Cancer is one of the main diseases threatening human health in the world. Doxorubicin (DOX) is a common anti-cancer drug that can be used for chemotherapy to extend a cancer patient's life. It is our common wish that treatment process of cancer is efficient and secure. Therefore, it is of great significance to develop sensitive, rapid and accurate techniques for anti-cancer drug doxorubicin (DOX) detection. Herein, in our work, a ratiometric electrochemical sensor for DOX detection was designed, which based on MB@MWCNTs/UiO-66-NH2 composites. The porous materials UiO-66-NH2 magically shoulder double function in our ratiometric electrochemical strategy, which can reduce the interior error caused by the various complex materials. Specifically, on the one hand, it can be used to catalyze DOX, which can provide a great current signal to be detected, on the other hand, its special property of absorbing molecules was utilized to load materials as internal reference. Consequently, we chose methylene blue (MB) as the substance that can generate an internal reference signal, because it is a specific and stable electroactive substance. Then, we added MWCNTs as a part of the material modified on the ratiometric electrochemical platform to enhance the signal of the target due to its feature of good electrical conductivity. Under the optimized conditions, the ratiometric electrochemical sensor displayed a wide linear detection with the range from 0.1 µM to 75 µM and the limit of detection (LOD) of 0.051 µM. The applicability of this method in the analysis of actual human saliva samples has been confirmed by the results of selectivity, stability, and reproducibility tests, which was prospective in clinical application.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Doxorrubicina , Técnicas Eletroquímicas , Humanos , Limite de Detecção , Ácidos Ftálicos , Estudos Prospectivos , Reprodutibilidade dos Testes
19.
J Colloid Interface Sci ; 606(Pt 2): 1163-1169, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34487935

RESUMO

Mn-doped perovskite nanocrystals have promised new optoelectronic applications due to their unique material properties. In the present study, Mn-doped perovskite nanocrystalline films were prepared in situ in a polymer matrix. The Mn-doped perovskite nanocrystals (PNCs) had good crystallinity and uniform size/spatial distributions in the polymer film. Bright dual-color emission and the long lifetime of the excited state of the dopant were observed from the host exciton and the Mn2+ dopant, respectively. Furthermore, magnetism was observed in the optimal Mn2+ concentration, implying that magnetic coupling was achieved in the Mn-doped perovskite lattice. The Mn-doped perovskite films also showed superior stability against moisture. To demonstrate the practicality of this composite film, a white light emitting device was fabricated by combining a single composite film with a blue light emitting diode; the device showed a high-quality white light emission, and the Commission Internationale De L'Eclairage (CIE) chromaticity coordinate of the white light emitting diode (WLED) (0.361, 0.326) was close to the optimal white color index. In this single-layer WLED, self-absorption among the luminous multilayers in traditional white light emitting diodes can be avoided. The study findings revealed that Mn-doped perovskite nanocrystalline films have many exciting properties, which bodes well for the fundamental study and design of high-performance optoelectronic devices.

20.
Mikrochim Acta ; 188(6): 213, 2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-34052919

RESUMO

A sandwich-format electrochemiluminescence (ECL) immunosensor has been developed for alpha-fetoprotein (AFP) detection based on the use of ordered mesoporous carbon-molybdenum disulfide (OMC-MoS2) as a sensor platform and cuprous oxide @ ordered mesoporous carbon-Ru(bpy)32+ (Cu2O@OMC-Ru) composites as signal tags. OMC alongside MoS2 plays a synergistic role in improving the electrochemical performance of the electrode in the electron transfer process. The uniform cubic-shaped Cu2O@OMC-Ru nanocrystals display excellent luminous efficiency, with a signal amplification strategy of OMC-MoS2 synergistic enhancement and Cu2O@OMC which is capable of immobilizing more Ru(bpy)32+ serving as a tracing tag to label antibodies. A detectable ECL emission at a Cu2O@OMC-Ru nanocrystals modified electrode is initiated at an applied voltage of +1.15 V (scanning range: 0-1.2 V), in the presence of the tripropylamine (TPA) as coreactant. With the increase in AFP concentration, the loading of Cu2O@OMC-Ru at the electrode increases. Afterward, the ECL detection of AFP shows a wide linear range from 0.1 pg/mL to 10 ng/mL with a correlation coefficient of 0.9964 and a detection limit of 0.011 pg/mL (S/N = 3) under the optimal experimental conditions. The recoveries were in the range 91.2-97.1% with RSD varying from 4.8 to 8.5%. Overall, the novel immunosensor has been successfully applied to the analysis of human serum samples, indicating a great potential for application in clinical diagnostics.


Assuntos
Biomarcadores Tumorais/sangue , Imunoensaio/métodos , Nanopartículas Metálicas/química , Nanocompostos/química , alfa-Fetoproteínas/análise , Anticorpos Imobilizados/imunologia , Biomarcadores Tumorais/imunologia , Carbono/química , Cobre/química , Dissulfetos/química , Técnicas Eletroquímicas/métodos , Eletrodos , Humanos , Limite de Detecção , Medições Luminescentes/métodos , Molibdênio/química , Compostos Organometálicos/química , Porosidade , Reprodutibilidade dos Testes , alfa-Fetoproteínas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...