Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biodivers ; : e202302048, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263380

RESUMO

Today, the bacterial infections caused by multidrug-resistant pathogens seriously threaten human health. Thereby, there is an urgent need to discover antibacterial drugs with novel mechanism. Here, novel psoralen derivatives had been designed and synthesized by a scaffold hopping strategy. Among these targeted twenty-five compounds, compound ZM631 showed the best antibacterial activity against methicillin-resistant S. aureus (MRSA) with the low MIC of 1 µg/mL which is 2-fold more active than that of the positive drug gepotidacin. Molecular docking study revealed that compound ZM631 fitted well in the active pockets of bacterial S. aureus DNA gyrase and formed a key hydrogen bond binding with the residue ASP-1083. These findings demonstrated that the psoralen scaffold could serve as an antibacterial lead compound for further drug development against multidrug-resistant bacterial infections.

2.
Bioorg Med Chem Lett ; 99: 129621, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244941

RESUMO

The progress of organicsyntheticmethod can promote late-stage lead compound modification and novel active compound discovery. Molecular editing technology in the field of organic synthesis, including peripheral and skeletal editing, facilitates rapid access to molecular diversity of a lead compound. Peripheral editing of CH bond activation is gradually used in lead optimization to afford novel active scaffolds and chemical space exploitation. To develop oridonin derivatives with high anti-inflammatory potency, novel oridonin sulfamides had been designed and synthesized by a scaffoldhopping strategy based on a visible-light photocatalysis peripheral editing. All novel compounds revealed measurable inhibition of IL-1ß and low cytotoxicity in THP-1 cells. The docking study indicated that the best active compound ZM640 was accommodated in thebinding site of NLRP3 with two hydrogen bond interaction. These preliminary results confirm that α, ß-unsaturated carbonyl of oridonin is not essential for NLRP3 inhibitory effect. This new oridonin scaffold has its potential to be further developed as a promising class of NLRP3 inhibitors.


Assuntos
Antineoplásicos , Diterpenos do Tipo Caurano , Antineoplásicos/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Diterpenos do Tipo Caurano/farmacologia , Diterpenos do Tipo Caurano/química , Técnicas de Química Sintética
3.
Molecules ; 29(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38257210

RESUMO

MASM, a structurally modified derivative of matrine, exhibits superior efficacy in reducing inflammation and liver injury in rats when compared to matrine. This study aims to investigate the pharmacokinetic profile and acute toxicity of MASM. Pharmacokinetic results revealed that MASM exhibited rapid absorption, with a Tmax ranging from 0.21 ± 0.04 h to 1.31 ± 0.53 h, and was eliminated slowly, with a t1/2 of approximately 10 h regardless of the route of administration (intravenous, intraperitoneal, or intragastric). The absolute intragastric bioavailability of MASM in rats was determined to be 44.50%, which was significantly higher than that of matrine (18.5%). MASM was detected in all rat tissues including the brain, and through the utilization of stable isotope-labeled compounds and standard references, ten metabolites of MASM, namely sophocarpine, oxysophocarpine, and oxymatrine, were tentatively identified. The LD50 of MASM in mice was determined to be 94.25 mg/kg, surpassing that of matrine (83.21 mg/kg) based on acute toxicity results. Histopathological and biochemical analysis indicated no significant alterations in the primary organs of the low- to medium-dosage groups of MASM. These findings provide valuable insights into the efficacy and toxicity profile of MASM.


Assuntos
Antracenos , Matrinas , Tionas , Camundongos , Ratos , Animais , Radioisótopos de Carbono , Distribuição Tecidual
4.
Eur J Med Chem ; 261: 115787, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37690263

RESUMO

Since tyrosine kinase inhibitor (TKI) could reverse ABCG2-mediated drug-resistance, novel chlorin e6-based conjugates of Dasatinib and Imatinib as photosensitizer (PS) were designed and synthesized. The results demonstrated that conjugate 10b showed strongest phototoxicity against HepG2 and B16-F10 cells, which was more phototoxic than chlorin e6 and Talaporfin. It could reduce efflux of intracellular PS by inhibiting ABCG2 in HepG2 cells, and localize in mitochondria, lysosomes, golgi and ER, resulting in higher cell apoptosis rate and ROS production than Talaporfin. Moreover, it could induce cell autophagy and block cell cycle in S phase, and significantly inhibit tumor growth and prolong survival time on BALB/c nude mice bearing HepG2 xenograft tumor to a greater extent than chlorin e6. Consequently, compound 10b could be applied as a promising candidate PS due to its good water-solubility and stability, low drug-resistance, high quantum yield of 1O2 and excellent antitumor efficacy in vitro and in vivo.


Assuntos
Fotoquimioterapia , Porfirinas , Animais , Camundongos , Humanos , Fármacos Fotossensibilizantes , Camundongos Nus , Linhagem Celular Tumoral , Fotoquimioterapia/métodos , Porfirinas/farmacologia
5.
J Med Chem ; 66(12): 8267-8280, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37257073

RESUMO

Blocking the Kelch-like epichlorohydrin-related protein 1 (Keap1)-nuclear factor-erythroid 2 related factor 2 (Nrf2) pathway is a promising strategy to alleviate acute lung injury (ALI). A naphthalensulfonamide NXPZ-2, targeting Keap1-Nrf2 interaction to release Nrf2, was confirmed to exhibit significant anti-inflammatory activities, however, accompanying nonideal solubility and PK profiles. To further improve the properties, twenty-nine novel naphthalenesulfonamide derivatives were designed by a fragment-based strategy. Among them, compound 10u with a (R)-azetidine group displayed the highest PPI inhibitory activity (KD2 = 0.22 µM). The hydrochloric acid form of 10u exhibited a 9-fold improvement on water solubility (S = 484 µg/mL, pH = 7.0) compared to NXPZ-2 (S = 55 µg/mL, pH = 7.0). It could significantly reduce LPS-induced lung oxidative damages and inflammations in vitro and in vivo. Furthermore, a satisfactory pharmacokinetic property was revealed. In conclusion, the novel azetidine-containing naphthalenesulfonamide represents a promising drug candidate for Keap1-targeting ALI treatment.


Assuntos
Lesão Pulmonar Aguda , Fator 2 Relacionado a NF-E2 , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Epicloroidrina , Lesão Pulmonar Aguda/tratamento farmacológico
6.
Chem Biodivers ; 20(2): e202200911, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36627123

RESUMO

Arenobufagin, one of the bufadienolides isolated from traditional Chinese medicine Chan'su, exhibits potent antitumor activity. However, serious toxicity and small therapeutic window limits its drug development. In the present study, to our knowledge, novel 3,11-bispeptide ester arenobufagin derivatives have been firstly designed and synthesized on the base of our previous discovery of active 3-monopeptide ester derivative. The in vitro antiproliferative activity evaluation revealed that the moiety at C3 and C11 hydroxy had an important influence on cytotoxic activity and selectivity. Compound ZM350 notably inhibited tumor growth by 58.8 % at a dose 10 mg/kg in an A549 nude mice xenograft model. Therefore, compound ZM350 also presented a concentration-dependent apoptosis induction and low inhibitory effect against both hERG potassium channel and Cav1.2 calcium channel. Our study suggests that novel 3,11-bispeptide ester derivatives will be a potential benefit to further antitumor agent development of arenobufagin.


Assuntos
Antineoplásicos , Bufanolídeos , Animais , Camundongos , Humanos , Linhagem Celular Tumoral , Cardiotoxicidade/tratamento farmacológico , Camundongos Nus , Antineoplásicos/farmacologia , Bufanolídeos/química , Apoptose , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células
7.
Steroids ; 188: 109112, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36150476

RESUMO

The ecto-5'-nucleotidase (CD73) is an important enzyme in the adenosine pathway and catalyzes the extracellular hydrolysis of adenosine monophosphate (AMP) yielding adenosine which is involved in the inflammation and immunosuppression. Inhibitors of CD73 have potential as novel immunotherapy agents for the treatment of cancer and infection. In this study, we discovered a series of fluorinated betulinic acid derivatives as potent CD73 inhibitors by a fluorine scanning strategy. Among these, three compounds ZM522, ZM553 and ZM557 exhibited inhibitory activity with IC50 values of 0.56 uM, 0.74 uM and 0.47 uM, respectively. In addition, these compounds showed a 7-fold, 5-fold and 8-fold increase in activity compared to the positive control drug α, ß-methylene adenosine diphosphate (APCP) against the human CD73 enzyme. Two of these (ZM522 and ZM553) also exhibited effective interferon gamma (INF-γ) elevation and indicated the regulation of rescued T cell activation. Therefore, our study provides both a lead optimization strategy and potential compounds for further development of small molecule CD73 inhibitors.


Assuntos
5'-Nucleotidase , Flúor , Humanos , 5'-Nucleotidase/antagonistas & inibidores , 5'-Nucleotidase/metabolismo , Adenosina , Triterpenos Pentacíclicos/química , Ácido Betulínico
8.
J Med Chem ; 65(13): 8798-8827, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35763424

RESUMO

Proteolysis-targeting chimeras (PROTACs) is a fast-growing technology providing many strengths over inhibition of protein activity directly and is attracting increasing interest in new drug discovery and development. However, efficiently identifying potent and drug-like degraders is still challenging in the development of PROTACs. Complementary to traditional PROTACs, several emerging types of PROTACs, such as homobivalent PROTACs based on two E3 ligases (e.g., CRBN, VHL, MDM2, TRIM24), chemical- or biological-based trivalent/multitargeted PROTACs, and covalent PROTACs, are rising for targeted protein degradation. These new types of PROTACs have several advantages over the traditional PROTACs including high selectivity, low toxicity, better therapeutic effects, and so on. In this perspective, we will summarize the latest development of representative PROTACs focusing on research mainly in past 10 years and discuss their advantages and disadvantages. Moreover, the outlook and perspectives on the associated challenges and future directions will be provided.


Assuntos
Quimera , Ubiquitina-Proteína Ligases , Quimera/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
9.
Bioorg Med Chem ; 59: 116672, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217359

RESUMO

The vast research and clinical result have verified the success of cancer immunotherapy. However, there is also facing the enormous challenges such as lack of precise pre-clinical models, optimal combined therapy regimen and acquired resistance to immunotherapy. Adenosine is a potent immune-modulating molecule and overexpression of CD73 on tumor leads to the high concentration of adenosine. Blockade of the key adenosine-generating enzyme CD73 can be a promising strategy for cancer immunotherapy. Here, we report the discovery of betulinic acid as a novel CD73 inhibitor lead compound by a hit-based substructure search strategy. Subsequent optimization led to the discovery of betulinic acid carbamate derivative ZM514 with 5.2-fold increased potency compared to lead compound. Simultaneously, study has showed that compound ZM514 was not a cytotoxic agent while betulinic acid showed modest antiproliferative activity. The present result provides a valuable inhibitor against the promising immuno-oncology target for further development.


Assuntos
5'-Nucleotidase , Neoplasias , Adenosina , Humanos , Imunoterapia , Triterpenos Pentacíclicos , Ácido Betulínico
10.
Eur J Med Chem ; 217: 113363, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33744687

RESUMO

The combination of photodynamic therapy (PDT) and chemotherapy is a prospective strategy to improve antitumor efficacy. Herein, a series of novel cytotoxic chlorin-based derivatives as dual photosensitizers (PSs) and histone deacetylase inhibitors (HDACIs) were synthesized and investigated for biological activity. Among them, compound 15e showed definite HDAC2 and 10 inhibitory activities by up-regulating expression of acetyl-H4 and highest phototoxicity and dark-toxicity, which was more phototoxic than Talaporfin as a PS while with stronger dark-toxicity compared to vorinostat (SAHA) as a HDACI. The biological assays demonstrated that 15e was liable to enter A549 cells and localized in mitochondria, lysosomes, golgi and endoplasmic reticulum (ER) etc. multiple organelles, resulting in higher cell apoptosis rate and ROS production compared to Talaporfin. Moreover, it could induce tumor cell autophagy as a dual PS and HDACI. All results suggested that compound 15e could be applied as a potential dual cytotoxic drug for PDT and chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Estrutura Molecular , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Porfirinas/síntese química , Porfirinas/química , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
11.
Bioorg Med Chem Lett ; 34: 127758, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33359608

RESUMO

The ATP-adenosine pathway has been recently identified as an attractive immune-oncology target and several drug candidates have been entered clinic trials. Inspired by the report of the first small-molecule CD73inhibitor AB680, we describe the discovery of natural product ellagic acid as a dual CD73 and CD39 inhibitor with an IC50 value of 1.85 ± 0.21 µM and 0.50 ± 0.22 µM, respectively. The result of cytotoxicity assays indicated that ellagic acid is a valuable lead compound with low cytotoxicity effect for immune therapy.


Assuntos
5'-Nucleotidase/antagonistas & inibidores , Antineoplásicos/farmacologia , Apirase/antagonistas & inibidores , Produtos Biológicos/farmacologia , Descoberta de Drogas , Ácido Elágico/farmacologia , Inibidores Enzimáticos/farmacologia , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Apirase/genética , Apirase/metabolismo , Produtos Biológicos/síntese química , Produtos Biológicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Ácido Elágico/síntese química , Ácido Elágico/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
12.
Steroids ; 166: 108772, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33271132

RESUMO

Active natural productscan be valuable lead compounds and numerous drugs derived from natural products have successfully entered the clinic. Arenobufagin, one of the important active components of toad venom, indicates significant antitumor activities with limited preclinical development for its strong cardiotoxicity. Ten 3-monopeptide substituted arenobufagin derivatives have been designed and synthesized. Antitumor activity and cardiotoxicity assays lead to the discovery of compound ZM226 as a potent antitumor agent with low cardiotoxicity. These findings suggest optimization of arenobufagin on position 3 maybe an efficacious strategy for the development of antitumor drug candidates derived from arenobufagin.


Assuntos
Bufanolídeos , Venenos de Anfíbios , Antineoplásicos , Linhagem Celular Tumoral , Humanos
13.
Eur J Med Chem ; 207: 112715, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32846322

RESUMO

This study aimed to improve the biological effectiveness and pharmacokinetic properties of chlorin e6, a second-generation photosensitizer (PS), for tumor photodynamic therapy (PDT). Herein, the novel 31-hexyloxy chlorin e6-based 152- or 131-amino acid derivatives 3a, 3b, 3c and 8 were synthesized and their photophysical properties and in vitro bioactivities such as phototoxicity against A549, HeLa and melanoma B16-F10 cells, reactive oxygen species (ROS) production and subcellular localization were evaluated. In addition, preferred target compounds were also investigated for their in vivo pharmacokinetic in SD rats and in vivo antitumor efficacies in C57BL/6 mice bearing melanoma B16-F10 cells. Apparently, simultaneous introduction of amino acid residue and n-hexyloxy chain in chlorin e6 made a significant improvement in photophysical properties, ROS production, in vitro and in vivo PDT efficacy. Encouragingly, all target compounds showed higher in vitro phototoxicity than Talaporfin, and that 3c (152-Lys) exhibited strongest phototoxicity and highest dark toxicity/phototoxicity ratio, followed by 8 (131-Asp), 3a (152-Asp) and 3b (152-Glu). Moreover, in vivo PDT antitumor efficacy of 3a, 3c and 8 was all better than that of Talaporfin, and that both 3c and 8 had stronger PDT antitumor efficiency than 3a. The overall results suggested that these novel 31-hexyloxy chlorin e6-based 152- or 131-amino acid derivatives, especially 3c and 8, might be potential antitumor candidate drugs for clinical treatment of melanoma by PDT.


Assuntos
Aminoácidos/química , Aminoácidos/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/química , Porfirinas/farmacologia , Células A549 , Aminoácidos/farmacocinética , Aminoácidos/uso terapêutico , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Clorofilídeos , Desenho de Fármacos , Células HeLa , Humanos , Masculino , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacocinética , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/farmacocinética , Porfirinas/uso terapêutico , Ratos Sprague-Dawley
14.
Chem Biodivers ; 17(7): e2000068, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32342605

RESUMO

(20S,21S)-7-Cyclohexyl-21-fluorocamptothecin was discovered by a fluorine drug design strategy with potent antitumor activity and increased metabolic stability. In continuous efforts to find novel antitumor agents derived from natural product camptothecin, 20-carbamates of the active compound (20S,21S)-7-cyclohexyl-21-fluorocamptothecin have been designed and synthesized. Among them, one compound with the diethylamino group showed greater antiproliferative activity than the other 20-carbamate derivatives. The following biological activity assays indicated that the above compound is a valuable lead compound with excellent Topo I inhibitory activity and solution stability.


Assuntos
Antineoplásicos/farmacologia , Camptotecina/análogos & derivados , Carbamatos/farmacologia , Desenho de Fármacos , Antineoplásicos/síntese química , Antineoplásicos/química , Camptotecina/síntese química , Camptotecina/química , Camptotecina/farmacologia , Carbamatos/síntese química , Carbamatos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
15.
J Med Chem ; 62(14): 6665-6681, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31095385

RESUMO

Necroptosis, a form of programmed cell death, plays a critical role in various diseases, including inflammatory, infectious, and degenerative diseases. We previously identified N-(7-cyano-6-(4-fluoro-3-(2-(3-(trifluoromethyl)phenyl)acetamido)phenoxy)benzo[d]thiazol-2-yl)cyclopropanecarboxamide (TAK-632) (6) as a potent inhibitor of necroptosis by targeting both receptor-interacting protein kinase 1 (RIPK1) and 3 (RIPK3) kinases. Herein, we performed three rounds of structural optimizations of TAK-632 and elucidated structure-activity relationships to generate more potent inhibitors by targeting RIPK3. The analogues with carbamide groups exhibited great antinecroptotic activities, and compound 42 showed >60-fold selectivity for RIPK3 than RIPK1. It blocked necrosome formation by specifically inhibiting the phosphorylation of RIPK3 in necroptotic cells. In a tumor necrosis factor-induced systemic inflammatory response syndrome model, it significantly protected mice from hypothermia and death at a dose of 5 mg/kg, which was much more effective than TAK-632. Moreover, it showed favorable and druglike pharmacokinetic properties in rats with an oral bioavailability of 25.2%. Thus, these RIPK3-targeting small molecules represent promising lead structures for further development.


Assuntos
Benzotiazóis/química , Benzotiazóis/farmacologia , Necroptose/efeitos dos fármacos , Nitrilas/química , Nitrilas/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Amidas/síntese química , Amidas/química , Amidas/farmacocinética , Amidas/farmacologia , Animais , Benzotiazóis/síntese química , Benzotiazóis/farmacocinética , Ciclopropanos/síntese química , Ciclopropanos/química , Ciclopropanos/farmacocinética , Ciclopropanos/farmacologia , Feminino , Células HT29 , Halogenação , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Nitrilas/síntese química , Nitrilas/farmacocinética , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacocinética , Ratos Sprague-Dawley , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Relação Estrutura-Atividade
16.
Br J Pharmacol ; 176(12): 2095-2108, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30825190

RESUMO

BACKGROUND AND PURPOSE: Necroptosis is a form of programmed, caspase-independent, cell death, mediated by receptor-interacting protein kinases, RIPK1 and RIPK3, and the mixed lineage kinase domain-like (MLKL). Necroptosis contributes to the pathophysiology of various inflammatory, infectious, and degenerative diseases. Thus, identification of low MW inhibitors for necroptosis has broad therapeutic relevance. Here, we identified that the pan-Raf inhibitor TAK-632 was also an inhibitor of necroptosis. We have further generated a more selective, highly potent analogue of TAK-632 by targeting RIPK1 and RIPK3. EXPERIMENTAL APPROACH: Cell viability was measured by MTT, propidium staining, or CellTiter-Glo luminescent assays. Effects of TAK-632 on necroptosis signalling pathways were investigated by western blotting, immunoprecipitation, and in vitro kinase assays. Downstream targets of TAK-632 were identified by a drug affinity responsive target stability assay and a pull-down assay with biotinylated TAK-632. A mouse model of TNF-α-induced systemic inflammatory response syndrome (SIRS) was further used to explore the role of TAK-632 in protecting against necroptosis-associated inflammation in vivo. KEY RESULTS: TAK-632 protected against necroptosis in human and mouse cells but did not protect cells from apoptosis. TAK-632 directly bound with RIPK1 and RIPK3 to inhibit kinase activities of both enzymes. In vivo, TAK-632 alleviated TNF-induced SIRS. Furthermore, we performed a structure-activity relationship analysis of TAK-632 analogues and generated SZM594, a highly potent inhibitor of RIPK1/3. CONCLUSIONS AND IMPLICATIONS: TAK-632 is an inhibitor of necroptosis and represents a new lead compound in the development of highly potent inhibitors of RIPK1 and RIPK3.


Assuntos
Benzotiazóis/farmacologia , Necroptose/efeitos dos fármacos , Nitrilas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Animais , Benzotiazóis/administração & dosagem , Benzotiazóis/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Feminino , Células HEK293 , Células HT29 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Nitrilas/administração & dosagem , Nitrilas/química , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/química , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Relação Estrutura-Atividade
17.
Eur J Med Chem ; 163: 883-895, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30580240

RESUMO

Targeted therapy has become an effective strategy of precision medicine for improving cancer treatment. Selectivity improvement is always popular in modern oncology because of decreased side effects in conventional cancer chemotherapy. The use of antibody-drug conjugates (ADC), a robust strategy for targeted therapy, applies antibodies to selectively deliver a potent cytotoxic compound to tumor cells and thus improve the therapeutic efficacy of the chemotherapeutic agents. Three ADC products (trastuzumab emtansine, brentuximab vedotin and inotuzumab ozogamicin) are already on the market, and several compounds are in clinical trials. Compared with ADCs, small molecule-drug conjugates (SMDCs) provide a new, less established perspective for targeted delivery. Nevertheless, SMDCs have several strengths: they have 1) a non-immunogenic nature, 2) much more manageable synthesis, 3) lower molecular weights, which confer a high potential for good cell penetration in solid tumors. SMDCs might therefore be a promising alternative with similar efficacy to ADCs. In this article, we highlight the medicinal chemistry aspects of SMDC design. SMDC targeting ligands, linkers and small-molecule payloads will be discussed. Successful cases of SMDCs used as therapeutic agents and other applications of SMDC will also be included.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Imunoconjugados/uso terapêutico , Antineoplásicos/administração & dosagem , Humanos , Medicina de Precisão/métodos
18.
Mol Pharm ; 15(9): 3892-3900, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30048137

RESUMO

Multidrug resistance and toxic side effects are the major challenges in cancer treatment with microtubule-targeting agents (MTAs), and thus, there is an urgent clinical need for new therapies. Chalcone, a common simple scaffold found in many natural products, is widely used as a privileged structure in medicinal chemistry. We have previously validated tubulin as the anticancer target for chalcone derivatives. In this study, an α-methyl-substituted indole-chalcone (FC77) was synthesized and found to exhibit an excellent cytotoxicity against the NCI-60 cell lines (average concentration causing 50% growth inhibition = 6 nM). More importantly, several multidrug-resistant cancer cell lines showed no resistance to FC77, and the compound demonstrated good selective toxicity against cancer cells versus normal CD34+ blood progenitor cells. A further mechanistic study demonstrated that FC77 could arrest cells that relate to the binding to tubulin and inhibit the microtubule dynamics. The National Cancer Institute COMPARE analysis and molecular modeling indicated that FC77 had a mechanism of action similar to that of colchicine. Overall, our data demonstrate that this indole-chalcone represents a novel MTA template for further development of potential drug candidates for the treatment of multidrug-resistant cancers.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Chalconas/química , Indóis/química , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistência a Múltiplos Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
19.
J Med Chem ; 61(16): 7245-7260, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30045621

RESUMO

p53-Murine double minute 2 (MDM2) interaction and histone deacetylases (HDACs) are important targets in antitumor drug development. Inspired by the synergistic effects between MDM2 and HDACs, the first MDM2/HDACs dual inhibitors were identified, which showed excellent activities against both targets. In particular, compound 14d was proven to be a potent and orally active MDM2/HDAC dual inhibitor, whose antitumor mechanisms were validated in cancer cells. Compound 14d showed excellent in vivo antitumor potency in the A549 xenograft model, providing a promising lead compound for the development of novel antitumor agents. Also, this proof-of-concept study offers a novel and efficient strategy for multitargeting antitumor drug discovery.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Células A549 , Acetilação/efeitos dos fármacos , Animais , Antineoplásicos/farmacocinética , Sítios de Ligação , Desenho de Fármacos , Feminino , Inibidores de Histona Desacetilases/química , Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Camundongos Nus , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Ratos Sprague-Dawley , Bibliotecas de Moléculas Pequenas/farmacologia , Estereoisomerismo , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Free Radic Biol Med ; 117: 228-237, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29428410

RESUMO

Small-molecule inhibitors that block the Keap1-Nrf2 protein-protein interactions are being intensely pursued as a new therapeutic strategy for oxidative stress-related diseases, such as cancer, diabetes, Alzheimer's disease, arteriosclerosis, inflammation and myocarditis. However, there are not enough studies on antioxidant treatments using small molecules in myocarditis. We herein provided a series of novel hydronaphthoquinones as the Keap1-Nrf2 interaction inhibitors targeting LPS-induced myocarditis both in vitro and in vivo. These compounds were designed through an in-silico fragment growing approach based on our previous reported compound, S47 (1). The new compounds were predicted to form additional hydrogen bonds with the S363 residue, leading to higher inhibitory activity. Among these new derivatives, compounds S01 and S05 emerged as inhibitors with significant biochemical potency, as determined by fluorescent anisotropy assay and confirmed by surface plasmon resonance (SPR) and differential scanning fluorimetry (DSF) assays. These inhibitors can dose-dependently protect the H9c2 cardiac cells against LPS-induced injury (100% at 2 µM and 4 µM) and effectively prolong survival or save the life of LPS-injured mice. Mechanistic studies showed that these inhibitors could release Nrf2 in H9c2 cells and LPS-inflammatory mouse models and translocate into the nucleus in a dose-response manner, which significantly increased the downstream genes (HO-1, NQO-1) and the pro-inflammatory cytokines (TNF-α, IL-1ß, IL-6), while ROS production dramatically decreased. Their protective effects and the mechanism of action were further confirmed by siNrf2 transfected experiment. Collectively, the novel hydronaphthoquinones can be used as promising lead compounds for the study of Keap1-Nrf2 protein-protein interactions and further anti-myocarditis drug development.


Assuntos
Antioxidantes/farmacologia , Descoberta de Drogas/métodos , Proteína 1 Associada a ECH Semelhante a Kelch/efeitos dos fármacos , Miocardite , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Camundongos , Camundongos Endogâmicos C57BL , Naftoquinonas/farmacologia , Ligação Proteica/efeitos dos fármacos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...