Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Molecules ; 29(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38999185

RESUMO

The growing interest in Kv7.2/7.3 agonists originates from the involvement of these channels in several brain hyperexcitability disorders. In particular, Kv7.2/7.3 mutants have been clearly associated with epileptic encephalopathies (DEEs) as well as with a spectrum of focal epilepsy disorders, often associated with developmental plateauing or regression. Nevertheless, there is a lack of available therapeutic options, considering that retigabine, the only molecule used in clinic as a broad-spectrum Kv7 agonist, has been withdrawn from the market in late 2016. This is why several efforts have been made both by both academia and industry in the search for suitable chemotypes acting as Kv7.2/7.3 agonists. In this context, in silico methods have played a major role, since the precise structures of different Kv7 homotetramers have been only recently disclosed. In the present review, the computational methods used for the design of Kv.7.2/7.3 small molecule agonists and the underlying medicinal chemistry are discussed in the context of their biological and structure-function properties.


Assuntos
Canal de Potássio KCNQ2 , Canal de Potássio KCNQ3 , Humanos , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/química , Canal de Potássio KCNQ3/metabolismo , Canal de Potássio KCNQ3/genética , Canal de Potássio KCNQ3/química , Canal de Potássio KCNQ3/antagonistas & inibidores , Simulação por Computador , Relação Estrutura-Atividade , Descoberta de Drogas/métodos , Animais
2.
ACS Omega ; 9(26): 29000-29008, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38973913

RESUMO

Metronidazole (2-methyl-5-nitro-1H-imidazole-1-ethanol, MNZ) is a well-known and widely used drug for its excellent activity against various anaerobic bacteria and protozoa. The purpose of this study is to elucidate the ability of MNZ to form metal complexes with Cu2+ and Zn2+ and to demonstrate that complexation increases its bioactivity profile against different pathogenic microorganisms. The interaction of MNZ with Cu2+ and Zn2+ was investigated in NaCl aqueous solution under different conditions of temperature (15, 25, and 37 °C) and ionic strength (0.15, 0.5, and 1 mol L-1) by potentiometric and spectrophotometric titrations. The obtained speciation models include two species for the Cu2+-containing system, namely, CuL and CuL2, and three species for the Zn2+-containing system, namely, ZnLH, ZnL, and ZnLOH. The formation constants of the species were calculated and their dependence on temperature and ionic strength evaluated. Comparison of the sequestering ability of MNZ under physiological conditions revealed a capacity toward Cu2+ higher than that toward Zn2+. A simulation under the same conditions also showed a significant percentage of the Cu2+-MNZ species. The biological assessments highlighted that the complexation of MNZ with Cu2+ has a relevant impact on the potency of the drug against two Trypanosoma spp. (i.e., T. b. brucei and T. b. rhodesiense) and one gram-(-) bacterial species (i.e., Escherichia coli). It is noteworthy that the increased potency upon complexation with Cu2+ did not result in cytotoxicity against MRC-5 human fetal lung fibroblasts and primary peritoneal mouse macrophages.

3.
Dalton Trans ; 53(25): 10571-10591, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38855858

RESUMO

In order to investigate the structural features and antiproliferative activity of Pd(II) complexes containing halogenated ligands with different flexibility, several Schiff base and reduced Schiff base Pd(II) complexes, namely X1X2PicPd, X1X2PyPd, X1X2Pic(R)Pd, and X1X2Py(R)Pd (where X1 = X2 = Cl, Br and I; Pic: 2-picolylamine; Py = 2-(2-pyridyl)ethylamine), were synthesized and characterized by spectroscopic methods and, in the case of Br2PyPd, Cl2Py(R)Pd and ClBrPy(R)Pd, also by X-ray crystallography. The results of the X-ray crystallography showed that in both series of complexes the Pd(II) ion has a distorted square-planar geometry, although the coordination modes of the two ligands are different. In the Schiff base-type complexes the ligand acts as a tridentate chelate with NN'O donor atoms, whereas in the reduced Schiff base-type complexes the ligand acts as a bidentate chelate with NN' donor atoms. In both series of complexes, the chloride ions occupy the residual coordination sites of the Pd(II) ion. TD-DFT calculations were performed for a better understanding of the UV-Vis spectra. From these calculations it was found that the signal appearing at ∼400 nm in the complexes with reduced Schiff base ligands (X1X2Pic(R)Pd and X1X2Py(R)Pd) is mainly due to a HOMO → LUMO transition, while for the Schiff base complex ClBrPyPd the signal is due to a HOMO → LUMO+1 transition. For the complex I2PicPd, combinations of HOMO-4 → LUMO and HOMO-2 → LUMO transitions were found to be responsible for that signal. In regard to the biological activity profile, all complexes were first investigated as proteasome inhibitors by fluorometric methods. From these enzymatic assays, it emerged that they are good inhibitors with IC50 values in the low-micromolar range and that their inhibitory activity is strictly related to the presence of the metal ion. Subsequently they were also subjected to cell-based assays (the resazurin method) to assess their antiproliferative properties by using two leukemic cell lines, namely the drug-sensitive CCRF-CEM cell line and its multidrug-resistant sub-cell line CEM/ADR5000. In this test they displayed IC50 values in the sub-micromolar and low-micromolar range determined for a selected metal complex (Br2Pic(R)Pd) and ligand (Cl2Pic(R)), respectively. Moreover, docking studies were performed on the two expected molecular targets, i.e. proteasome and DNA, to shed light on the mechanisms of action of these types of Pd(II) complexes.


Assuntos
Antineoplásicos , Proliferação de Células , Complexos de Coordenação , Paládio , Bases de Schiff , Bases de Schiff/química , Bases de Schiff/farmacologia , Humanos , Paládio/química , Paládio/farmacologia , Proliferação de Células/efeitos dos fármacos , Ligantes , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Cristalografia por Raios X , Linhagem Celular Tumoral , Halogenação , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Modelos Moleculares
4.
Molecules ; 29(10)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38792254

RESUMO

In recent years, there has been a growing interest in the use of medicinal plants and phytochemicals as potential treatments for acne vulgaris. This condition, characterized by chronic inflammation, predominantly affects adolescents and young adults. Conventional treatment typically targets the key factors contributing to its development: the proliferation of Cutibacterium acnes and the associated inflammation. However, these treatments often involve the use of potent drugs. As a result, the exploration of herbal medicine as a complementary approach has emerged as a promising strategy. By harnessing the therapeutic properties of medicinal plants and phytochemicals, it may be possible to address acne vulgaris while minimizing the reliance on strong drugs. This approach not only offers potential benefits for individuals seeking alternative treatments but also underscores the importance of natural remedies of plant origin in dermatological care. The primary aim of this study was to assess the antimicrobial, antioxidant, and anti-inflammatory properties of plants and their phytochemical constituents in the management of mild acne vulgaris. A comprehensive search of scientific databases was conducted from 2018 to September 2023. The findings of this review suggest that medicinal plants and their phytochemical components hold promise as treatments for mild acne vulgaris. However, it is crucial to note that further research employing high-quality evidence and standardized methodologies is essential to substantiate their efficacy and safety profiles.


Assuntos
Acne Vulgar , Compostos Fitoquímicos , Plantas Medicinais , Acne Vulgar/tratamento farmacológico , Plantas Medicinais/química , Humanos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/uso terapêutico
5.
Molecules ; 29(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38257397

RESUMO

Indole is an important element of many natural and synthetic molecules with significant biological activity. Nonetheless, the co-presence of transitional metals in organic scaffold may represent an important factor in the development of effective medicinal agents. This review covers some of the latest and most relevant achievements in the biological and pharmacological activity of important indole-containing metal complexes in the area of drug discovery.


Assuntos
Complexos de Coordenação , Complexos de Coordenação/farmacologia , Descoberta de Drogas , Indóis/farmacologia
6.
Inorg Chem ; 63(2): 1083-1101, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38156413

RESUMO

A novel class of Ru(II)-based polypyridyl complexes with an auxiliary salicylaldehyde ligand [Ru(phen)2(X-Sal)]BF4 {X: H (1), 5-Cl (2), 5-Br (3), 3,5-Cl2 (4), 3,5-Br2 (5), 3-Br,5-Cl (6), 3,5-I2 (7), 5-NO2 (8), 5-Me (9), 4-Me (10), 4-OMe (11), and 4-DEA (12), has been synthesized and characterized by elemental analysis, FT-IR, and 1H/13C NMR spectroscopy. The molecular structure of 4, 6, 9, 10, and 11 was determined by single-crystal X-ray diffraction analysis which revealed structural similarities. DFT and TD-DFT calculations showed that they also possess similar electronic structures. Absorption/emission spectra were recorded for 2, 3, 10, and 11. All Ru-complexes, unlike the pure ligands and the complex lacking the salicylaldehyde component, displayed outstanding antiproliferative activity in the screening test (10 µM) against CCRF-CEM leukemia cells underlining the crucial role of the presence of the auxiliary ligand for the biological activity. The two most active derivatives, namely 7 and 10, were selected for continuous assays showing IC50 values in the submicromolar and micromolar range against drug-sensitive CCRF-CEM and multidrug-resistant CEM/ADR5000 leukemia cells, respectively. These two compounds were investigated in silico for their potential binding to duplex DNA well-matched and mismatched base pairs, since they showed remarkable selectivity indexes (2.2 and 19.5 respectively) on PBMC cells.


Assuntos
Aldeídos , Antineoplásicos , Complexos de Coordenação , Leucemia , Rutênio , Humanos , Ligantes , Leucócitos Mononucleares/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Rutênio/farmacologia , Rutênio/química , Complexos de Coordenação/química , Antineoplásicos/farmacologia , Antineoplásicos/química
7.
Biomolecules ; 13(9)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37759739

RESUMO

The main protease (Mpro) plays a pivotal role in the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is considered a highly conserved viral target. Disruption of the catalytic activity of Mpro produces a detrimental effect on the course of the infection, making this target one of the most attractive for the treatment of COVID-19. The current success of the SARS-CoV-2 Mpro inhibitor Nirmatrelvir, the first oral drug for the treatment of severe forms of COVID-19, has further focused the attention of researchers on this important viral target, making the search for new Mpro inhibitors a thriving and exciting field for the development of antiviral drugs active against SARS-CoV-2 and related coronaviruses.

8.
Eur J Pharmacol ; 956: 175980, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37567459

RESUMO

The use of cisplatin and its derivatives in cancer treatment triggered the interest in metal-containing complexes as potential novel anticancer agents. Palladium (II)-based complexes have been synthesized in recent years with promising antitumor activity. Previously, we described the synthesis and cytotoxicity of palladium (II) complexes containing halogen-substituted Schiff bases and 2-picolylamine. Here, we selected two palladium (II) complexes with double chlorine-substitution or double iodine-substitution that displayed the best cytotoxicity in drug-sensitive CCRF-CEM and multidrug-resistant CEM/ADR5000 leukemia cells for further biological investigation. Surprisingly, these compounds did not significantly induce apoptotic cell death. This study aims to reveal the major mode of cell death of these two palladium (II) complexes. We performed annexin V-FITC/PI staining and flow cytometric mitochondrial membrane potential measurement followed by western blotting, immunofluorescence microscopy, and alkaline single cell electrophoresis (comet assay). J4 and J6 still induced neither apoptosis nor necrosis in both leukemia cell lines. They also insufficiently induced autophagy as evidenced by Beclin and p62 detection in western blotting. Interestingly, J4 and J6 induced a novel mode of cell death (parthanatos) as mainly demonstrated in CCRF-CEM cells by hyper-activation of poly(ADP-ribose) polymerase 1 (PARP) and poly(ADP-ribose) (PAR) using western blotting, flow cytometric measurement of mitochondrial membrane potential collapse, nuclear translocation of apoptosis-inducing factor (AIF) by immunofluorescence microscopy, and DNA damage by alkaline single cell electrophoresis (comet assay). AIF translocation was also observed in CEM/ADR5000 cells. Thus, parthanatos was the predominant mode of cell death induced by J4 and J6, which explains the high cytotoxicity in CCRF-CEM and CEM/ADR5000 cells. J4 and J6 may be interesting drug candidates and deserve further investigations to overcome resistance of tumors against apoptosis. This study will promote the design of further novel palladium (II)-based complexes as chemotherapeutic agents.


Assuntos
Antineoplásicos Fitogênicos , Leucemia , Parthanatos , Humanos , Paládio/farmacologia , Halogênios/farmacologia , Bases de Schiff/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Resistência a Múltiplos Medicamentos , Antineoplásicos Fitogênicos/farmacologia , Morte Celular , Apoptose , Leucemia/tratamento farmacológico
9.
Arch Pharm (Weinheim) ; 356(7): e2300174, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37119396

RESUMO

The ubiquitin-proteasome pathway (UPP) represents the principal proteolytic apparatus in the cytosol and nucleus of all eukaryotic cells. Nowadays, proteasome inhibitors (PIs) are well-known as anticancer agents. However, although three of them have been approved by the US Food and Drug Administration (FDA) for treating multiple myeloma and mantel cell lymphoma, they present several side effects and develop resistance. For these reasons, the development of new PIs with better pharmacological characteristics is needed. Recently, noncovalent inhibitors have gained much attention since they are less toxic as compared with covalent ones, providing an alternative mechanism for solid tumors. Herein, we describe a new class of bis-homologated chloromethyl(trifluoromethyl)aziridines as selective noncovalent PIs. In silico and in vitro studies were conducted to elucidate the mechanism of action of such compounds. Human gastrointestinal absorption (HIA) and blood-brain barrier (BBB) penetration were also considered together with absorption, distribution, metabolism, and excretion (ADMET) predictions.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/uso terapêutico , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Neoplasias/tratamento farmacológico
10.
Org Biomol Chem ; 21(18): 3811-3824, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37078164

RESUMO

COVID-19 now ranks among the most devastating global pandemics in history. The causative virus, SARS-CoV-2, is a new human coronavirus (hCoV) that spreads among humans and animals. Great efforts have been made to develop therapeutic agents to treat COVID-19, and among the available viral molecular targets, the cysteine protease SARS-CoV-2 Mpro is considered the most appealing one due to its essential role in viral replication. However, the inhibition of Mpro activity is an interesting challenge and several small molecules and peptidomimetics have been synthesized for this purpose. In this work, the Michael acceptor cinnamic ester was employed as an electrophilic warhead for the covalent inhibition of Mpro by endowing some peptidomimetic derivatives with such a functionality. Among the synthesized compounds, the indole-based inhibitors 17 and 18 efficiently impaired the in vitro replication of beta hCoV-OC-43 in the low micromolar range (EC50 = 9.14 µM and 10.1 µM, respectively). Moreover, the carbamate derivative 12 showed an antiviral activity of note (EC50 = 5.27 µM) against another hCoV, namely hCoV-229E, thus suggesting the potential applicability of such cinnamic pseudopeptides also against human alpha CoVs. Taken together, these results support the feasibility of considering the cinnamic framework for the development of new Mpro inhibitors endowed with antiviral activity against human coronaviruses.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Antivirais/farmacologia , Antivirais/química , Replicação Viral , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química
11.
Molecules ; 28(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36903597

RESUMO

The COVID-19 pandemic has given a strong impetus to the search for antivirals active on SARS-associated coronaviruses. Over these years, numerous vaccines have been developed and many of these are effective and clinically available. Similarly, small molecules and monoclonal antibodies have also been approved by the FDA and EMA for the treatment of SARS-CoV-2 infection in patients who could develop the severe form of COVID-19. Among the available therapeutic tools, the small molecule nirmatrelvir was approved in 2021. It is a drug capable of binding to the Mpro protease, an enzyme encoded by the viral genome and essential for viral intracellular replication. In this work, by virtual screening of a focused library of ß-amido boronic acids, we have designed and synthesized a focused library of compounds. All of them were biophysically tested by microscale thermophoresis, attaining encouraging results. Moreover, they also displayed Mpro protease inhibitory activity, as demonstrated by performing enzymatic assays. We are confident that this study will pave the way for the design of new drugs potentially useful for the treatment of SARS-CoV-2 viral infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Pandemias , Inibidores de Proteases/química , Antivirais/farmacologia , Simulação de Acoplamento Molecular
12.
Molecules ; 28(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36677572

RESUMO

SARS-CoV-2 Mpro is a chymotrypsin-like cysteine protease playing a relevant role during the replication and infectivity of SARS-CoV-2, the coronavirus responsible for COVID-19. The binding site of Mpro is characterized by the presence of a catalytic Cys145 which carries out the hydrolytic activity of the enzyme. As a consequence, several Mpro inhibitors have been proposed to date in order to fight the COVID-19 pandemic. In our work, we designed, synthesized and biologically evaluated MPD112, a novel inhibitor of SARS-CoV-2 Mpro bearing a trifluoromethyl diazirine moiety. MPD112 displayed in vitro inhibition activity against SARS-CoV-2 Mpro at a low micromolar level (IC50 = 4.1 µM) in a FRET-based assay. Moreover, an inhibition assay against PLpro revealed lack of inhibition, assuring the selectivity of the compound for the Mpro. Furthermore, the target compound MPD112 was docked within the binding site of the enzyme to predict the established intermolecular interactions in silico. MPD112 was subsequently tested on the HCT-8 cell line to evaluate its effect on human cells' viability, displaying good tolerability, demonstrating the promising biological compatibility and activity of a trifluoromethyl diazirine moiety in the design and development of SARS-CoV-2 Mpro binders.


Assuntos
Antivirais , Diazometano , Inibidores de Proteases , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/química , Diazometano/química , Diazometano/farmacologia , Simulação de Acoplamento Molecular , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos
13.
Beilstein J Nanotechnol ; 13: 1361-1369, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36474926

RESUMO

Advanced nanoscale antimicrobials, originated from the combination of noble metal nanoparticles (NPs) with conventional antimicrobial drugs, are considered the next generation of antimicrobial agents. Therefore, there is an increasing demand for rapid, eco-friendly, and relatively inexpensive synthetic approaches for the preparation of nontoxic metallic nanostructures endowed with unique physicochemical properties. Recently, we have proposed a straightforward synthetic strategy that exploits the properties of polymeric ß-cyclodextrin (PolyCD) to act as both the reducing and stabilizing agent to produce monodispersed and stable gold-based NPs either as monometallic (nanoG) structures or core-shell bimetallic (nanoGS) architectures with an external silver layer. Here, we describe the preparation of a supramolecular assembly between nanoGS and pentamidine, an antileishmanial drug endowed with a wide range of therapeutic properties (i.e., antimicrobial, anti-inflammatory, and anticancer). The physicochemical characterization of the supramolecular assembly (nanoGSP) in terms of size and colloidal stability was investigated by complementary spectroscopic techniques, such as UV-vis, ζ-potential, and dynamic light scattering (DLS). Furthermore, the role of PolyCD during the reduction/stabilization of metal NPs was investigated for the first time by NMR spectroscopy.

14.
Molecules ; 27(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36558133

RESUMO

Transition metal complexes have continued to constitute an appealing class of medicinal compounds since the exceptional discovery of cisplatin in the late 1960s. Pt(II)-based complexes are endowed with a broad range of biological properties, which are mainly exerted by targeting DNA. In this study, we report a significant biological investigation into and computation analyses of four Pt(II)-complexes, namely, LDP-1-4, synthesized and characterized according to previously reported procedures. Molecular-modelling studies highlighted that the top two LDP compounds (i.e., LDP-1 and LDP-4) might bind to both matched and mismatched base pair sites of the oligonucleotide 5'-(dCGGAAATTACCG)2-3', supporting their anticancer potential. These two complexes displayed noteworthy cytotoxicity in vitro (sub-micromolar-micromolar range) against two leukaemia cell lines, i.e., CCRF-CEM and its multi-drug-resistant counterpart CEM/ADR5000, and remarkable anti-angiogenic properties (in the sub-micromolar range) evaluated in an in vivo model, i.e., a chick embryo chorioallantoic membrane (CAM) assay.


Assuntos
Antineoplásicos , Complexos de Coordenação , Animais , Embrião de Galinha , Platina/farmacologia , Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Cisplatino , DNA , Linhagem Celular Tumoral
15.
Int J Mol Sci ; 23(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36555601

RESUMO

In the panorama of sustainable chemistry, the use of green solvents is increasingly emerging for the optimization of more eco-friendly processes which look to a future of biocompatibility and recycling. The green solvent Cyrene, obtained from biomass via a two-step synthesis, is increasingly being introduced as the solvent of choice for the development of green synthetic transformations and for the production of biomaterials, thanks to its interesting biocompatibility, non-toxic and non-mutagenic properties. Our review offers an overview of the most important organic reactions that have been investigated to date in Cyrene as a medium, in particular focusing on those that could potentially lead to the formation of relevant chemical bonds in bioactive molecules. On the other hand, a description of the employment of Cyrene in the production of biomaterials has also been taken into consideration, providing a point-by-point overview of the use of Cyrene to date in the aforementioned fields.


Assuntos
Química Verde , Solventes/química , Biomassa
16.
Org Biomol Chem ; 20(42): 8293-8304, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36227250

RESUMO

α,α-Difluoromethyl ketones (DFMKs) have emerged as currently investigated agents benefiting from the merging of chemico-physical features conferred by the constitutive elements (-CHF2 and carbonyl moietites). With a view to biological applications, the additional incorporation of heterocycles is a desirable property enabling the tuning of critical factors encompassing the pharmaco-dynamic and kinetic profiles. The underexplored assembling of α,α-difluoromethyl-heteroaromatic ketones is herein implemented via a conceptually intuitive Weinreb amide acylative transfer of a putative difluoromethyl-carbanion. To make the strategy productive, we adopted the commercially available TMSCHF2 pronucleophile - characterized by robust chemical stability and manipulability (bp 65 °C) - which upon Lewis-base mediated activation delivers the competent CHF2-nucleophile. The synthetic protocol was carried out on pyrazole- and isoxazole-based scaffolds, and a panel of heteroaryl-DFMKs was consequently developed as potential COX-inhibitors. In this sense, the bioisosterism deducted through docking studies between the widely expressed carboxylic group (in several clinically used COX inhibitors) and the -COCHF2 motif introduced herein supports this rationale. To confirm the docking results, all compounds were tested against both COX-1 and COX-2 enzyme isoforms showing activity in the micromolar range and a good selectivity index (SI). They were also evaluated for their biocompatibility using NIH/3T3 cells to which they did not show any significant toxicity.


Assuntos
Isoxazóis , Cetonas , Camundongos , Animais , Cetonas/química , Inibidores de Ciclo-Oxigenase/química , Pirazóis/química , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2 , Relação Estrutura-Atividade
17.
Int J Mol Sci ; 23(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36293216

RESUMO

The ubiquitin-proteasome pathway (UPP) is the major proteolytic system in the cytosol and nucleus of all eukaryotic cells. The role of proteasome inhibitors (PIs) as critical agents for regulating cancer cell death has been established. Aziridine derivatives are well-known alkylating agents employed against cancer. However, to the best of our knowledge, aziridine derivatives showing inhibitory activity towards proteasome have never been described before. Herein we report a new class of selective and nonPIs bearing an aziridine ring as a core structure. In vitro cell-based assays (two leukemia cell lines) also displayed anti-proliferative activity for some compounds. In silico studies indicated non-covalent binding mode and drug-likeness for these derivatives. Taken together, these results are promising for developing more potent PIs.


Assuntos
Antineoplásicos , Aziridinas , Neoplasias , Humanos , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Complexo de Endopeptidases do Proteassoma/metabolismo , Antineoplásicos/uso terapêutico , Aziridinas/farmacologia , Aziridinas/química , Neoplasias/metabolismo , Alquilantes , Ubiquitinas
18.
Molecules ; 27(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35164399

RESUMO

Recently, bimetallic nanoparticles (BMNPs) blending the properties of two metals in one nanostructured system have generated enormous interest due to their potential applications in various fields including biosensing, imaging, nanomedicine, and catalysis. BMNPs have been developed later with respect to the monometallic nanoparticles (MNPs) and their physicochemical and biological properties have not yet been comprehensively explored. The manuscript aims at collecting the main design criteria used to synthetize BMNPs focusing on green route synthesis. The influence of experimental parameters such as temperature, time, reagent concentrations, capping agents on the particle growth and colloidal stability are examined. Finally, an overview of their nanotechnological applications and biological profile are presented.

19.
Molecules ; 26(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361819

RESUMO

One of the main current strategies for cancer treatment is represented by combination chemotherapy. More recently, this strategy shifted to the "hybrid strategy", namely the designing of a new molecular entity containing two or more biologically active molecules and having superior features compared with the individual components. Moreover, the term "hybrid" has further extended to innovative drug delivery systems based on biocompatible nanomaterials and able to deliver one or more drugs to specific tissues or cells. At the same time, there is an increased interest in plant-derived polyphenols used as antitumoral drugs. The present review reports the most recent and intriguing research advances in the development of hybrids based on the polyphenols curcumin and resveratrol, which are known to act as multifunctional agents. We focused on two issues that are particularly interesting for the innovative chemical strategy involved in their development. On one hand, the pharmacophoric groups of these compounds have been used for the synthesis of new hybrid molecules. On the other hand, these polyphenols have been introduced into hybrid nanomaterials based on gold nanoparticles, which have many potential applications for both drug delivery and theranostics in chemotherapy.


Assuntos
Produtos Biológicos/uso terapêutico , Curcumina/uso terapêutico , Neoplasias/tratamento farmacológico , Resveratrol/uso terapêutico , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/uso terapêutico , Produtos Biológicos/química , Curcumina/química , Sistemas de Liberação de Medicamentos , Ouro/química , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Resveratrol/química , Estilbenos/química
20.
Bioorg Med Chem Lett ; 49: 128285, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34303813

RESUMO

The reaction of potentially N,N,O-tridentate Schiff base ligands, Cl-LH, Br-LH, BrCl-LH and H-LH, with [VIVO(acac)2] in 2:1 ratio in methanol gave the corresponding mononuclear and dinuclear oxidovanadium(IV) complexes, VO(Cl-L)2 (1), VO(Br-L)2 (2), [(BrCl-L)2(H2O)V(µ-O)VO(BrCl-L)2] (3) and [(H-L)2(H2O)V(µ -O)VO(H-L)2] (4), in good yields. The ligands and complexes were fully characterized by elemental analysis and FT-IR spectroscopy. The ligands were also characterized by 1H NMR spectroscopy. The oxidation state of V(IV)O with d1 configuration in all synthesized complexes was confirmed by EPR. Moreover, the structures of 2 and 3 were determined by X-ray diffraction (XRD) analysis which revealed them as mono- and dinuclear vanadium(IV) complexes, respectively, with the ligands coordinated as bidentate chelates. The structure of 3 represents the first example of dinuclear V(IV) complex with O â†’ VIV = O â†’ VIV = O core (Cambridge Structural Database (CSD)​, version 5.42, update of May 2021). The cytotoxicity of ligands and complexes was evaluated towards ovarian (A2780), breast (MCF7) and prostate (PC3) cancer cells at 48 h. While ligands showed modest IC50 values (>42 µM), all complexes turned out to be effective in the range 3.9-17.2 µM. In particular, A2780 and MCF7 cell lines were the most sensitive to the newly synthesized V(IV)O complexes.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Bases de Schiff/farmacologia , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Estrutura Molecular , Bases de Schiff/síntese química , Vanádio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...