Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Cell Death Differ ; 30(1): 82-93, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35927303

RESUMO

Raptor plays a critical role in mTORC1 signaling. High expression of Raptor is associated with resistance of cancer cells to PI3K/mTOR inhibitors. Here, we found that OTUB1-stabilized Raptor in a non-canonical manner. Using biochemical assays, we found that the tyrosine 26 residue (Y26) of OTUB1 played a critical role in the interaction between OTUB1 and Raptor. Furthermore, non-receptor tyrosine kinases (Src and SRMS kinases) induced phosphorylation of OTUB1 at Y26, which stabilized Raptor. Interestingly, phosphorylation of OTUB1 at Y26 did not affect the stability of other OTUB1-targeted substrates. However, dephosphorylation of OTUB1 destabilized Raptor and sensitized cancer cells to anti-cancer drugs via mitochondrial reactive oxygen species-mediated mitochondrial dysfunction. Furthermore, we detected high levels of phospho-OTUB1 and Raptor in samples of patients with renal clear carcinoma. Our results suggested that regulation of OTUB1 phosphorylation may be an effective and selective therapeutic target for treating cancers via down-regulation of Raptor.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Serina-Treonina Quinases TOR , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosforilação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína Regulatória Associada a mTOR/metabolismo , Tirosina/metabolismo
2.
Cell Death Dis ; 13(6): 552, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715412

RESUMO

Inhibition of cathepsin D (Cat D) sensitizes cancer cells to anticancer drugs via RNF183-mediated downregulation of Bcl-xL expression. Although NF-κB activation is involved in the upregulation of RNF183 expression, the molecular mechanism of NF-κB activation by Cat D inhibition is unknown. We conducted this study to investigate the molecular mechanism underlying Cat D-mediated NF-κB activation. Interestingly, Cat D inhibition-induced IκB degradation in an autophagy-dependent manner. Knockdown of autophagy-related genes (ATG7 and Beclin1) and lysosome inhibitors (chloroquine and bafilomycin A1) blocked IκB degradation via Cat D inhibition. Itch induced K63-linked ubiquitination of IκB and then modulated the protein stability of IκB by Cat D inhibition. Inhibition of Cat D-mediated Itch activation was modulated by the JNK signaling pathway, and phosphorylated Itch could bind to IκB, resulting in polyubiquitination of IκB. Additionally, inhibition of Cat D increased autophagy flux via activation of the LKB1-AMPK-ULK1 pathway. Therefore, our results suggested that Cat D inhibition activated NF-κB signaling via degradation of autophagy-dependent IκB, which is associated with the upregulation of RNF183, an E3 ligase of Bcl-xL. Cat D inhibition enhances TRAIL-induced apoptosis through Bcl-xL degradation via upregulation of RNF183.


Assuntos
Antineoplásicos , NF-kappa B , Antineoplásicos/farmacologia , Apoptose , Autofagia , Catepsina D/genética , Proteínas I-kappa B/metabolismo , NF-kappa B/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
3.
Redox Biol ; 53: 102336, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35584569

RESUMO

Cathepsin K inhibitor (odanacatib; ODN) and cathepsin K knockdown (siRNA) enhance oxaliplatin-induced apoptosis through p53-dependent Bax upregulation. However, its underlying mechanisms remain unclear. In this study, we elucidated the mechanism behind enhancement of oxaliplatin-induced apoptosis by ODN. We also investigated the molecular mechanisms of ODN-induced Bax upregulation. Here, we demonstrated that ODN-induced Bax upregulation required p53, but it was independent of p53 transcriptional activity. Various mutants of the DNA-binding domain of p53 induced Bax upregulation in ODN-treated cells. p53 functional domain analysis showed that the C-terminal domain of p53 participates in the physical interaction and stabilization of Sp1, a major transcription factor of Bax. We screened a specific siRNA encoding 50 deubiquitinases and identified that BAP1 stabilizes Sp1. The knockdown or catalytic mutant form of BAP1 abolished the ODN-induced upregulation of Sp1 and Bax expression. Mechanistically, ODN induced BAP1 phosphorylation and enhanced Sp1-BAP1 interaction, resulting in Sp1 ubiquitination and degradation. Interestingly, ODN-induced BAP1 phosphorylation and DNA damage were modulated by the production of mitochondrial reactive oxygen species (ROS). Mitochondrial ROS scavengers prevented DNA damage, BAP1-mediated Sp1 stabilization, and Bax upregulation by ODN. BAP1 downregulation by siRNA inhibited apoptosis induced by the combined treatment of ODN and oxaliplatin/etoposide. Therefore, Sp1 is a crucial transcription factor for ODN-induced Bax upregulation, and Sp1 stabilization is regulated by BAP1.


Assuntos
Apoptose , Proteína Supressora de Tumor p53 , Catepsina K/metabolismo , Oxaliplatina , Fosforilação , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
4.
Cell Death Dis ; 13(2): 115, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121737

RESUMO

Cathepsin D (Cat D) is well known for its roles in metastasis, angiogenesis, proliferation, and carcinogenesis in cancer. Despite Cat D being a promising target in cancer cells, effects and underlying mechanism of its inhibition remain unclear. Here, we investigated the plausibility of using Cat D inhibition as an adjuvant or sensitizer for enhancing anticancer drug-induced apoptosis. Inhibition of Cat D markedly enhanced anticancer drug-induced apoptosis in human carcinoma cell lines and xenograft models. The inhibition destabilized Bcl-xL through upregulation of the expression of RNF183, an E3 ligase of Bcl-xL, via NF-κB activation. Furthermore, Cat D inhibition increased the proteasome activity, which is another important factor in the degradation of proteins. Cat D inhibition resulted in p62-dependent activation of Nrf2, which increased the expression of proteasome subunits (PSMA5 and PSMB5), and thereby, the proteasome activity. Overall, Cat D inhibition sensitized cancer cells to anticancer drugs through the destabilization of Bcl-xL. Furthermore, human renal clear carcinoma (RCC) tissues revealed a positive correlation between Cat D and Bcl-xL expression, whereas RNF183 and Bcl-xL expression indicated inverse correlation. Our results suggest that inhibition of Cat D is promising as an adjuvant or sensitizer for enhancing anticancer drug-induced apoptosis in cancer cells.


Assuntos
Antineoplásicos , Carcinoma de Células Renais , Catepsina D , Neoplasias Renais , Ubiquitina-Proteína Ligases , Antineoplásicos/farmacologia , Apoptose , Carcinoma de Células Renais/tratamento farmacológico , Catepsina D/antagonistas & inibidores , Linhagem Celular Tumoral , Humanos , Neoplasias Renais/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteína bcl-X/metabolismo
5.
Oncogene ; 41(4): 550-559, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34785775

RESUMO

Cathepsin K is highly expressed in various types of cancers. However, the effect of cathepsin K inhibition in cancer cells is not well characterized. Here, cathepsin K inhibitor (odanacatib; ODN) and knockdown of cathepsin K (siRNA) enhanced oxaliplatin-induced apoptosis in multiple cancer cells through Bax upregulation. Bax knockdown significantly inhibited the combined ODN and oxaliplatin treatment-induced apoptotic cell death. Stabilization of p53 by ODN played a critical role in upregulating Bax expression at the transcriptional level. Casein kinase 2 (CK2)-dependent phosphorylation of OTUB1 at Ser16 played a critical role in ODN- and cathepsin K siRNA-mediated p53 stabilization. Interestingly, ODN-induced p53 and Bax upregulation were modulated by the production of mitochondrial reactive oxygen species (ROS). Mitochondrial ROS scavengers prevented OTUB1-mediated p53 stabilization and Bax upregulation by ODN. These in vitro results were confirmed by in mouse xenograft model, combined treatment with ODN and oxaliplatin significantly reduced tumor size and induced Bax upregulation. Furthermore, human renal clear carcinoma (RCC) tissues revealed a strong correlation between phosphorylation of OTUB1(Ser16) and p53/Bax expression. Our results demonstrate that cathepsin K inhibition enhances oxaliplatin-induced apoptosis by increasing OTUB1 phosphorylation via CK2 activation, thereby promoting p53 stabilization, and hence upregulating Bax.


Assuntos
Antineoplásicos/uso terapêutico , Catepsina K/metabolismo , Oxaliplatina/uso terapêutico , Proteína Supressora de Tumor p53/genética , Proteína X Associada a bcl-2/genética , Animais , Antineoplásicos/farmacologia , Apoptose , Morte Celular , Linhagem Celular Tumoral , Humanos , Camundongos , Oxaliplatina/farmacologia , Regulação para Cima
6.
J Pineal Res ; 72(1): e12781, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34826170

RESUMO

Melatonin, secreted by the pineal gland, regulates the circadian rhythms and also plays an oncostatic role in cancer cells. Previously, we showed that melatonin induces the expression of Bim, a pro-apoptotic Bcl-2 protein, at both the transcriptional and post-translational levels. In the present study, we investigated the molecular mechanisms underlying the melatonin-mediated Bim upregulation through post-translational regulation. We found that ovarian tumor domain-containing protein 1 (OTUD1), a deubiquitinase belonging to the OTU protein family, is upregulated by melatonin at the mRNA and protein levels. OTUD1 knockdown inhibited melatonin-induced Bim upregulation and apoptosis in cancer cells. OTUD1 directly interacted with Bim and inhibited its ubiquitination. Melatonin-induced OTUD1 upregulation caused deubiquitination at the lysine 3 residue of Bim, resulting in its stabilization. In addition, melatonin-induced activation of Sp1 was found to be involved in OTUD1 upregulation at the transcriptional level, and pharmacological inhibition and genetic ablation of Sp1 (siRNA) interrupted melatonin-induced OTUD1-mediated Bim upregulation. Furthermore, melatonin reduced tumor growth and induced upregulation of OTUD1 and Bim in a mouse xenograft model. Notably, Bim expression levels correlated with OTUD1 levels in patients with renal clear cell carcinoma. Thus, our results demonstrated that melatonin induces apoptosis by stabilizing Bim via Sp1-mediated OTUD1 upregulation.


Assuntos
Melatonina , Animais , Apoptose , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2/genética , Linhagem Celular Tumoral , Humanos , Melatonina/farmacologia , Camundongos , Fator de Transcrição Sp1/genética , Ativação Transcricional , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo , Regulação para Cima
7.
Sci Rep ; 11(1): 12698, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135409

RESUMO

Premature ventricular contraction (PVC), a common arrhythmia affecting 1-2% of the general population, has been considered to have a benign clinical course. However, people with PVC often develop heart failure and ventricular arrhythmias such as ventricular tachycardia. We aimed to clarify the risk of heart failure and lethal ventricular arrhythmias in people with PVC. The Korean National Health Insurance Service database was used for this study. People who underwent nationwide health check-ups in 2009 were enrolled in this study and clinical follow-up data until December 2018 were analyzed. Newly diagnosed PVC in 2009 (≥ 1 inpatient or outpatient claim) were identified and cumulative incidence of heart failure (≥ 1 inpatient claim) and ventricular arrhythmias (≥ 1 inpatient or outpatient claim) were compared. A total of 4515 people were first diagnosed with PVC in 2009 among 9,743,582 people without prior history of PVC, heart failure, or ventricular arrhythmias. People with newly diagnosed PVC in 2009 had a significantly higher incidence of heart failure compared to those without PVC [adjusted hazard ratio (HR) 1.371; 95% confidence interval (CI) 1.177-1.598; p < 0.001]. Significant interaction was observed between age and PVC with young age people at greater risk of developing heart failure for having PVC. The incidence of ventricular arrhythmia was also significantly increased in people with PVC (HR 5.588; 95% CI 4.553-6.859; p < 0.001). Age and chronic kidney disease had significant interactions with PVC. In conclusion, the incidence of heart failure and ventricular arrhythmia was significantly increased in people with PVC. Outpatient follow-up of people with PVC can be helpful to detect early signs of heart failure or advanced forms of ventricular arrhythmia.


Assuntos
Insuficiência Cardíaca/epidemiologia , Taquicardia Ventricular/epidemiologia , Complexos Ventriculares Prematuros/complicações , Adulto , Fatores Etários , Idoso , Feminino , Insuficiência Cardíaca/etiologia , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Taquicardia Ventricular/etiologia
8.
Molecules ; 25(24)2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302576

RESUMO

Mitochondrial fragmentation occurs during the apoptosis. Dynamin-related protein 1 (Drp1) acts as an important component in mitochondrial fission machinery and can regulate various biological processes including apoptosis, cell cycle, and proliferation. The present study demonstrates that dysfunction of mitochondrial dynamics plays a pivotal role in cisplatin-induced apoptosis. Inhibiting the mitochondrial fission with the specific inhibitor (Mdivi-1) did not affect apoptotic cell death in low concentrations (<10 µM). Interestingly, mdivi-1 enhanced cisplatin-induced apoptosis in cancer cells, but not in normal cells. Particularly in the presence of mdivi-1, several human cancer cell lines, including renal carcinoma cell line Caki-1, became vulnerable to cisplatin by demonstrating the traits of caspase 3-dependent apoptosis. Combined treatment induced downregulation of c-FLIP expression transcriptionally, and ectopic expression of c-FLIP attenuated combined treatment-induced apoptotic cell death with mdivi-1 plus cisplatin. Collectively, our data provide evidence that mdivi-1 might be a cisplatin sensitizer.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Transcrição Gênica/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular Tumoral , Humanos , Neoplasias Renais/genética , Quinazolinonas/farmacologia
9.
Cancers (Basel) ; 12(11)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207629

RESUMO

FTY720, a sphingosine-1-phosphate (S1P) receptor modulator, is a synthetic compound produced by the modification of a metabolite from I. sinclairii. Here, we found that FTY720 induced non-apoptotic cell death in human glioma cells (U251MG, U87MG, and U118MG). FTY720 (10 µM) dramatically induced cytoplasmic vacuolation in glioma cells. However, FTY720-mediated vacuolation and cell death are not associated with autophagy. Genetic or pharmacological inhibition of autophagy did not inhibit FTY720-induced cell death. Herein, we detected that FTY720-induced cytoplasmic vacuoles were stained with lysotracker red, and FTY720 induced lysosomal membrane permeabilization (LMP). Interestingly, cathepsin inhibitors (E64D and pepstatin A) and ectopic expression of heat shock protein 70 (HSP70), which is an endogenous inhibitor of LMP, markedly inhibited FTY720-induced cell death. Our results demonstrated that FTY720 induced non-apoptotic cell death via the induction of LMP in human glioma cells.

10.
Molecules ; 25(19)2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33050112

RESUMO

Magnolol is a biologically active compound, isolated from the Chinese herb Magnolia, that regulates antiproliferative, anticancer, antiangiogenic and antimetastatic activities. We found that magnolol sensitizes TRAIL-induced apoptotic cell death via upregulation of DR5 and downregulation of cellular FLICE-inhibitory protein (c-FLIP) and Mcl-1 in cancer cells, but not in normal cells. Mechanistically, magnolol increased ATF4-dependent DR5 expression at the transcription level, and knockdown of ATF4 markedly inhibited magnolol-induced DR5 upregulation. Silencing DR5 with siRNA prevented combined treatment with magnolol and TRAIL-induced apoptosis and PARP cleavage. Magnolol induced proteasome-mediated Mcl-1 downregulation, while magnolol-induced c-FLIP downregulation was regulated, at least in part, by lysosomal degradation. Our results revealed that magnolol enhanced TRAIL-induced apoptosis via ATF4-dependent DR5 upregulation and downregulation of c-FLIP and Mcl-1 proteins.


Assuntos
Compostos de Bifenilo/farmacologia , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Regulação para Baixo/efeitos dos fármacos , Lignanas/farmacologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Neoplasias/tratamento farmacológico , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/genética , Regulação para Cima/efeitos dos fármacos , Células A549 , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Regulação para Baixo/genética , Células HeLa , Humanos , Neoplasias/genética , Complexo de Endopeptidases do Proteassoma/genética , Regulação para Cima/genética
11.
Cancers (Basel) ; 12(10)2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33050333

RESUMO

Dexamethasone (DEX), a synthetic glucocorticoid, is commonly used as immunosuppressive and chemotherapeutic agent. This study was undertaken to investigate the effects of DEX on the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in cancer cells. We found that upregulation of c-FLIP(L) and downregulation of death receptor 5 (DR5; receptor for TRAIL ligand) contribute to the anti-apoptotic effect of DEX on TRAIL-induced apoptosis. DEX increased c-FLIP(L) expression at the transcriptional levels through the GSK-3ß signaling pathway. The pharmacological inhibitor and catalytic mutant of GSK-3ß suppressed DEX-induced upregulation of c-FLIP(L) expression. Furthermore, GSK-3ß specific inhibitor markedly abolished DEX-mediated reduction of TRAIL-induced apoptosis in human renal cancer cells (Caki-1 and A498), human lung cancer cells (A549), and human breast cancer cells (MDA-MB361). In addition, DEX decreased protein stability of DR5 via GSK-3ß-mediated upregulation of Cbl, an E3 ligase of DR5. Knockdown of Cbl by siRNA markedly inhibited DEX-induced DR5 downregulation. Taken together, these results suggest that DEX inhibits TRAIL-mediated apoptosis via GSK-3ß-mediated DR5 downregulation and c-FLIP(L) upregulation in cancer cells.

12.
Cancers (Basel) ; 12(9)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825566

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively is able to increase apoptosis in cancer cells as agent with minimum toxicity to noncancerous cells. However, all cancer cells are not sensitive to TRAIL-induced apoptosis. In this study, we showed the sub-lethal concentrations of a lysosomotropic autophagy inhibitor, IITZ-01, sensitizes cancer cells (renal, lung, and breast carcinoma) to TRAIL-induced apoptosis through DR5 upregulation and survivin downregulation through ubiquitin-proteasome pathway. Knockdown of DR5 or overexpression of survivin inhibited combined treatment with IITZ-01 and TRAIL-induced apoptosis. IITZ-01 downregulated protein expression of Cbl, ubiquitin E3 ligase, and decreased expression level of Cbl markedly led to increase DR5 protein expression and TRAIL sensitivity. Moreover, IITZ-01 decreased expression level of survivin protein via downregulation of deubiquitinase ubiquitin-specific protease 9X (USP9X) expression. Taken together, these results provide the first evidence that IITZ-01 enhances TRAIL-mediated apoptosis through DR5 stabilization by downregulation of Cbl and USP9X-dependent survivin ubiquitination and degradation in renal carcinoma cells.

13.
Toxicol Res ; 36(2): 167-173, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32257929

RESUMO

Arylquin 1, a small-molecule prostate-apoptosis-response-4 (Par-4) secretagogue, targets vimentin to induce Par-4 secretion. Secreted Par-4 binds to its receptor, 78-kDa glucose-regulated protein (GRP78), on the cancer cell surface and induces apoptosis. In the present study, we investigated the molecular mechanisms of arylquin 1 in cancer cell death. Arylquin 1 induces morphological changes (cell body shrinkage and cell detachment) and decreases cell viability in various cancer cells. Arylquin 1-induced cell death is not inhibited by apoptosis inhibitors (z-VAD-fmk, a pan-caspase inhibitor), necroptosis inhibitors (necrostatin-1), and paraptosis inhibitors. Furthermore, arylquin 1 significantly induces reactive oxygen species levels, but antioxidants [N-acetyl-l-cysteine and glutathione ethyl ester] do not inhibit arylquin 1-induced cell death. Furthermore, Par-4 knock-down by small interfering RNA confers no effect on cytotoxicity in arylquin 1-treated cells. Interestingly, arylquin 1 induces lysosomal membrane permeabilization (LMP), and cathepsin inhibitors and overexpression of 70-kDa heat shock protein (HSP70) markedly prevent arylquin 1-induced cell death. Therefore, our results suggest that arylquin 1 induces non-apoptotic cell death in cancer cells through the induction of LMP.

14.
Redox Biol ; 30: 101422, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31901727

RESUMO

Cathepsin K (Cat K) is expressed in cancer cells, but the effect of Cat K on apoptosis is still elusive. Here, we showed that inhibition of Cat K sensitized the human carcinoma cells to anti-cancer drug through up-regulation of Bim. Inhibition of Cat K increased USP27x expression, and knock down of USP27x markedly blocked Cat K-induced up-regulation of Bim expression. Furthermore, inhibition of Cat K induced proteasome-dependent degradation of regulatory associated protein of mammalian target of rapamycin (Raptor). Down-regulation of Raptor expression increased mitochondrial ROS production, and mitochondria specific superoxide scavengers prevented USP27x-mediated stabilization of Bim by inhibition of Cat K. Moreover, combined treatment with Cat K inhibitor (odanacatib) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) reduced tumor growth and induced cell death in a xenograft model. Our results demonstrate that Cat K inhibition enhances anti-cancer drug sensitivity through USP27x-mediated the up-regulation of Bim via the down-regulation of Raptor.


Assuntos
Antineoplásicos/farmacologia , Proteína 11 Semelhante a Bcl-2/química , Compostos de Bifenilo/farmacologia , Catepsina K/metabolismo , Neoplasias Renais/tratamento farmacológico , Mitocôndrias/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Animais , Proteína 11 Semelhante a Bcl-2/metabolismo , Catepsina K/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Neoplasias Renais/metabolismo , Masculino , Camundongos , Estabilidade Proteica , Espécies Reativas de Oxigênio/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Cancers (Basel) ; 11(12)2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31817696

RESUMO

: Hispidulin, a natural compound present in herbs, has anti-cancer effects. Here, we investigated whether hispidulin sensitizes human carcinoma cells to apoptosis induced by TRAIL. Sub-lethal dosages of TRAIL alone and hispidulin alone does not increase apoptosis, but hispidulin increases sensitivity to TRAIL, resulting in induction of apoptosis in hispidulin plus TRAIL-treated cancer cells. In addition, combined treatment with hispidulin and TRAIL also reduced tumor growth and increased apoptosis in xenograft models. However, hispidulin did not alter cell viability in human renal normal mesangial cells and human skin fibroblast. Hispidulin markedly increased the BH3-only proteins Bim at the post-translational levels. Depletion of Bim with siRNA significantly blocked hispidulin plus TRAIL-induced apoptosis. Furthermore, we found that activation of AMPK by hispidulin has a crucial role in Bim proteins stability through up-regulation of USP51 expression. Our findings suggest that USP51-dependent stabilization of Bim by AMPK activation plays a critical role in hispidulin-mediated sensitization of cancer cells to apoptosis induced by TRAIL.

16.
Biomolecules ; 9(12)2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31817770

RESUMO

Honokiol is a natural biphenolic compound extracted from traditional Chinese medicine Magnolia species, which have been known to display various biological effects including anti-cancer, anti-proliferative, anti-angiogenic, and anti-metastatic activities in cancer cells. Here, we found that honokiol sensitizes cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis through downregulation of anti-apoptotic proteins survivin and c-FLIP. Ectopic expression of survivin and c-FLIP markedly abolished honokiol and TRAIL-induced apoptosis. Mechanistically, honokiol induced protein degradation of c-FLIP and survivin through STAMBPL1, a deubiquitinase. STAMBPL1 interacted with survivin and c-FLIP, resulted in reduction of ubiquitination. Knockdown of STAMBPL1 reduced survivin and c-FLIP protein levels, while overexpression of STAMBPL1 inhibited honokinol-induced survivin and c-FLIP degradation. Our findings provided that honokiol could overcome TRAIL resistance through survivin and c-FLIP degradation induced by inhibition of STAMBPL1 expression.


Assuntos
Compostos de Bifenilo/farmacologia , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Lignanas/farmacologia , Peptídeo Hidrolases/metabolismo , Survivina/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/efeitos dos fármacos , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos , Peptídeo Hidrolases/genética , Extratos Vegetais/farmacologia , Survivina/efeitos dos fármacos , Ligante Indutor de Apoptose Relacionado a TNF/efeitos dos fármacos , Ubiquitinação/genética
17.
J Cancer Prev ; 24(3): 155-162, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31624721

RESUMO

BACKGROUND: Hispolon has been shown to possess antitumor effects in various cancer cells. However, the underlying mechanisms are not fully understood. In this study, we evaluated the sensitizing effect of hispolon on TNF-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in human renal carcinoma cells. METHODS: Apoptosis was analyzed by using cell-based cytometer. The mRNA levels were assessed by reverse transcription-PCR. Bax activation was determined by oligomerization and fluorescence-activated cell sorting with Bax-NT monoclonal antibody. The protein expression was measured by Western blotting. RESULTS: Hispolon induced up-regulation of Bim and death receptors expression at the post-translational level. CONCLUSIONS: Hispolon enhanced TRAIL-mediated apoptosis in renal carcinoma cells, but not in normal cells.

18.
Biochimie ; 165: 108-114, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31336136

RESUMO

Oridonin is a diterpenoid isolated from the Rabdosia rubescens and has multiple biological effects, such as anti-inflammation and anti-tumor activities. In present study, we revealed that the sensitizing effect of oridonin on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in several cancer cells, but not in normal cells. Oridonin enhanced death-signaling inducing complexes (DISC) formation and DR5 glycosylation without affecting expression of downstream intracellular apoptosis-related proteins. Oridonin upregulated peptidyl O-glycosyltransferase GALNT14 in a dose- and time-dependent manner. Knockdown of GALNT14 by siRNA and Endo H treatment reduced oridonin-induced DR5 glycosylation. Furthermore, treatment with inhibitor of glycosylation (benzyl-α-GalNAc) blocked oridonin plus TRAIL-induced apoptosis. Collectively, our results suggest that oridonin-induced DR5 glycosylation contributes to TRAIL-induced apoptotic cell death in cancer cells.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/efeitos dos fármacos , Diterpenos do Tipo Caurano/farmacologia , N-Acetilgalactosaminiltransferases/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/fisiologia , Linhagem Celular , Glicosilação , Humanos , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
19.
Int J Mol Sci ; 20(13)2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269715

RESUMO

R428, a selective small molecule Axl inhibitor, is known to have anti-cancer effects, such as inhibition of invasion and proliferation and induction of cell death in cancer cells. The Axl receptor tyrosine kinase is highly expressed in cancer cells and the level of Axl expression is associated with survival, metastasis, and drug resistance of many cancer cells. However, the effect of Axl inhibition on overcoming anti-cancer drugs resistance is unclear. Therefore, we investigated the capability of Axl inhibition as a therapeutic agent for the induction of TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) sensitivity. In this study, R428 markedly sensitized cancer cells to TRAIL-induced apoptotic cell death, but not in normal human skin fibroblast (HSF) and human umbilical vein cells (EA.hy926). Moreover, knockdown of Axl by siRNA also increased TRAIL-induced apoptosis. R428 decreased c-FLIP proteins levels via induction of miR-708 expression and survivin protein levels at the post-translational level, and we found that knockdown of Axl also decreased both c-FLIP and survivin protein expression. Overexpression of c-FLIP and survivin markedly inhibited R428 plus TRAIL-induced apoptosis. Furthermore, R428 sensitized cancer cells to multiple anti-cancer drugs-mediated cell death. Our results provide that inhibition of Axl could improve sensitivity to TRAIL through downregulation of c-FLIP and survivin expression in renal carcinoma cells. Taken together, Axl may be a tempting target to overcome TRAIL resistance.


Assuntos
Apoptose/efeitos dos fármacos , Benzocicloeptenos/farmacologia , Carcinoma de Células Renais/tratamento farmacológico , Neoplasias Renais/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Triazóis/farmacologia , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Humanos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Survivina/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Receptor Tirosina Quinase Axl
20.
Molecules ; 24(11)2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31195760

RESUMO

Hispidulin (4',5,7-trihydroxy-6-methoxyflavone) is a natural compound derived from traditional Chinese medicinal herbs, and it is known to have an anti-inflammatory effect. Here, we investigated the effect of hispidulin on the immunoglobulin E (IgE)-mediated allergic responses in rat basophilic leukemia (RBL)-2H3 mast cells. When RBL-2H3 cells were sensitized with anti-dinitrophenyl (anti-DNP) IgE and subsequently stimulated with DNP-human serum albumin (HSA), histamine and ß-hexosaminidase were released from the cells by degranulation of activated mast cells. However, pretreatment with hispidulin before the stimulation of DNP-HSA markedly attenuated release of both in anti-DNP IgE-sensitized cells. Furthermore, we investigated whether hispidulin inhibits anti-DNP IgE and DNP-HSA-induced passive cutaneous anaphylaxis (PCA), as an animal model for Type I allergies. Hispidulin markedly decreased the PCA reaction and allergic edema of ears in mice. In addition, activated RBL-2H3 cells induced the expression of inflammatory cytokines (tumor necrosis factor-α and interleukin-4), which are critical for the pathogenesis of allergic disease, through the activation of c-Jun N-terminal kinase (JNK). Inhibition of JNK activation by hispidulin treatment reduced the induction of cytokine expression in the activated mast cells. Our results indicate that hispidulin might be a possible therapeutic candidate for allergic inflammatory diseases through the suppression of degranulation and inflammatory cytokines expression.


Assuntos
Citocinas/metabolismo , Regulação para Baixo , Flavonas/uso terapêutico , Liberação de Histamina , Hipersensibilidade/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Inflamação/tratamento farmacológico , Mastócitos/patologia , Animais , Degranulação Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Flavonas/química , Flavonas/farmacologia , Liberação de Histamina/efeitos dos fármacos , Hipersensibilidade/complicações , Imunoglobulina E/metabolismo , Inflamação/complicações , Inflamação/patologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Mastócitos/efeitos dos fármacos , Camundongos Endogâmicos ICR , Anafilaxia Cutânea Passiva/efeitos dos fármacos , Fosforilação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...