Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(10): 11870-11882, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38496939

RESUMO

Palmitoyl-protein thioesterase 1 (PPT1) is an understudied enzyme that is gaining attention due to its role in the depalmitoylation of several proteins involved in neurodegenerative diseases and cancer. PPT1 is overexpressed in several cancers, specifically cholangiocarcinoma and esophageal cancers. Inhibitors of PPT1 lead to cell death and have been shown to enhance the killing of tumor cells alongside known chemotherapeutics. PPT1 is hence a viable target for anticancer drug development. Furthermore, mutations in PPT1 cause a lysosomal storage disorder called infantile neuronal ceroid lipofuscinosis (CLN1 disease). Molecules that can inhibit, stabilize, or modulate the activity of this target are needed to address these diseases. We used PPT1 enzymatic assays to identify molecules that were subsequently tested by using differential scanning fluorimetry and microscale thermophoresis. Selected compounds were also tested in neuroblastoma cell lines. The resulting PPT1 screening data was used for building machine learning models to help select additional compounds for testing. We discovered two of the most potent PPT1 inhibitors reported to date, orlistat (IC50 178.8 nM) and palmostatin B (IC50 11.8 nM). When tested in HepG2 cells, it was found that these molecules had decreased activity, indicating that they were likely not penetrating the cells. The combination of in vitro enzymatic and biophysical assays enabled the identification of several molecules that can bind or inhibit PPT1 and may aid in the discovery of modulators or chaperones. The molecules identified could be used as a starting point for further optimization as treatments for other potential therapeutic applications outside CLN1 disease, such as cancer and neurological diseases.

2.
J Chem Inf Model ; 61(6): 2641-2647, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34032436

RESUMO

The growing quantity of public and private data sets focused on small molecules screened against biological targets or whole organisms provides a wealth of drug discovery relevant data. This is matched by the availability of machine learning algorithms such as Support Vector Machines (SVM) and Deep Neural Networks (DNN) that are computationally expensive to perform on very large data sets with thousands of molecular descriptors. Quantum computer (QC) algorithms have been proposed to offer an approach to accelerate quantum machine learning over classical computer (CC) algorithms, however with significant limitations. In the case of cheminformatics, which is widely used in drug discovery, one of the challenges to overcome is the need for compression of large numbers of molecular descriptors for use on a QC. Here, we show how to achieve compression with data sets using hundreds of molecules (SARS-CoV-2) to hundreds of thousands of molecules (whole cell screening data sets for plague and M. tuberculosis) with SVM and the data reuploading classifier (a DNN equivalent algorithm) on a QC benchmarked against CC and hybrid approaches. This study illustrates the steps needed in order to be "quantum computer ready" in order to apply quantum computing to drug discovery and to provide the foundation on which to build this field.


Assuntos
COVID-19 , Descoberta de Drogas , Algoritmos , Metodologias Computacionais , Humanos , Aprendizado de Máquina , Teoria Quântica , SARS-CoV-2 , Máquina de Vetores de Suporte
3.
Chem Res Toxicol ; 34(5): 1296-1307, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33400519

RESUMO

Acetylcholinesterase (AChE) is an important drug target in neurological disorders like Alzheimer's disease, Lewy body dementia, and Parkinson's disease dementia as well as for other conditions like myasthenia gravis and anticholinergic poisoning. In this study, we have used a combination of high-throughput screening, machine learning, and docking to identify new inhibitors of this enzyme. Bayesian machine learning models were generated with literature data from ChEMBL for eel and human AChE inhibitors as well as butyrylcholinesterase inhibitors (BuChE) and compared with other machine learning methods. High-throughput screens for the eel AChE inhibitor model identified several molecules including tilorone, an antiviral drug that is well-established outside of the United States, as a newly identified nanomolar AChE inhibitor. We have described how tilorone inhibits both eel and human AChE with IC50's of 14.4 nM and 64.4 nM, respectively, but does not inhibit the closely related BuChE IC50 > 50 µM. We have docked tilorone into the human AChE crystal structure and shown that this selectivity is likely due to the reliance on a specific interaction with a hydrophobic residue in the peripheral anionic site of AChE that is absent in BuChE. We also conducted a pharmacological safety profile (SafetyScreen44) and kinase selectivity screen (SelectScreen) that showed tilorone (1 µM) only inhibited AChE out of 44 toxicology target proteins evaluated and did not appreciably inhibit any of the 485 kinases tested. This study suggests there may be a potential role for repurposing tilorone or its derivatives in conditions that benefit from AChE inhibition.


Assuntos
Antivirais/farmacologia , Inibidores da Colinesterase/farmacologia , Tilorona/farmacologia , Acetilcolinesterase/metabolismo , Animais , Antivirais/química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Electrophorus , Humanos , Aprendizado de Máquina , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Tilorona/química
4.
Mol Pharm ; 18(1): 403-415, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33325717

RESUMO

Machine learning methods are attracting considerable attention from the pharmaceutical industry for use in drug discovery and applications beyond. In recent studies, we and others have applied multiple machine learning algorithms and modeling metrics and, in some cases, compared molecular descriptors to build models for individual targets or properties on a relatively small scale. Several research groups have used large numbers of datasets from public databases such as ChEMBL in order to evaluate machine learning methods of interest to them. The largest of these types of studies used on the order of 1400 datasets. We have now extracted well over 5000 datasets from CHEMBL for use with the ECFP6 fingerprint and in comparison of our proprietary software Assay Central with random forest, k-nearest neighbors, support vector classification, naïve Bayesian, AdaBoosted decision trees, and deep neural networks (three layers). Model performance was assessed using an array of fivefold cross-validation metrics including area-under-the-curve, F1 score, Cohen's kappa, and Matthews correlation coefficient. Based on ranked normalized scores for the metrics or datasets, all methods appeared comparable, while the distance from the top indicated that Assay Central and support vector classification were comparable. Unlike prior studies which have placed considerable emphasis on deep neural networks (deep learning), no advantage was seen in this case. If anything, Assay Central may have been at a slight advantage as the activity cutoff for each of the over 5000 datasets representing over 570,000 unique compounds was based on Assay Central performance, although support vector classification seems to be a strong competitor. We also applied Assay Central to perform prospective predictions for the toxicity targets PXR and hERG to further validate these models. This work appears to be the largest scale comparison of these machine learning algorithms to date. Future studies will likely evaluate additional databases, descriptors, and machine learning algorithms and further refine the methods for evaluating and comparing such models.


Assuntos
Descoberta de Drogas/métodos , Algoritmos , Teorema de Bayes , Bases de Dados Factuais , Árvores de Decisões , Humanos , Aprendizado de Máquina , Redes Neurais de Computação , Estudos Prospectivos , Software , Máquina de Vetores de Suporte
5.
ACS Omega ; 5(41): 26551-26561, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33110983

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia, affecting approximately 35 million people worldwide. The current treatment options for people with AD consist of drugs designed to slow the rate of decline in memory and cognition, but these treatments are not curative, and patients eventually suffer complete cognitive injury. With the substantial amounts of published data on targets for this disease, we proposed that machine learning software could be used to find novel small-molecule treatments that can supplement the AD drugs currently on the market. In order to do this, we used publicly available data in ChEMBL to build and validate Bayesian machine learning models for AD target proteins. The first AD target that we have addressed with this method is the serine-threonine kinase glycogen synthase kinase 3 beta (GSK3ß), which is a proline-directed serine-threonine kinase that phosphorylates the microtubule-stabilizing protein tau. This phosphorylation prompts tau to dissociate from the microtubule and form insoluble oligomers called paired helical filaments, which are one of the components of the neurofibrillary tangles found in AD brains. Using our Bayesian machine learning model for GSK3ß consisting of 2368 molecules, this model produced a five-fold cross validation ROC of 0.905. This model was also used for virtual screening of large libraries of FDA-approved drugs and clinical candidates. Subsequent testing of selected compounds revealed a selective small-molecule inhibitor, ruboxistaurin, with activity against GSK3ß (avg IC50 = 97.3 nM) and GSK3α (IC50 = 695.9 nM). Several other structurally diverse inhibitors were also identified. We are now applying this machine learning approach to additional AD targets to identify approved drugs or clinical trial candidates that can be repurposed as AD therapeutics. This represents a viable approach to accelerate drug discovery and do so at a fraction of the cost of traditional high throughput screening.

6.
Mol Pharm ; 17(7): 2628-2637, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32422053

RESUMO

Drug-induced liver injury (DILI) is one the most unpredictable adverse reactions to xenobiotics in humans and the leading cause of postmarketing withdrawals of approved drugs. To date, these drugs have been collated by the FDA to form the DILIRank database, which classifies DILI severity and potential. These classifications have been used by various research groups in generating computational predictions for this type of liver injury. Recently, groups from Pfizer and AstraZeneca have collated DILI in vitro data and physicochemical properties for compounds that can be used along with data from the FDA to build machine learning models for DILI. In this study, we have used these data sets, as well as the Biopharmaceutics Drug Disposition Classification System data set, to generate Bayesian machine learning models with our in-house software, Assay Central. The performance of all machine learning models was assessed through both the internal 5-fold cross-validation metrics and prediction accuracy of an external test set of compounds with known hepatotoxicity. The best-performing Bayesian model was based on the DILI-concern category from the DILIRank database with an ROC of 0.814, a sensitivity of 0.741, a specificity of 0.755, and an accuracy of 0.746. A comparison of alternative machine learning algorithms, such as k-nearest neighbors, support vector classification, AdaBoosted decision trees, and deep learning methods, produced similar statistics to those generated with the Bayesian algorithm in Assay Central. This study demonstrates machine learning models grouped in a tool called MegaTox that can be used to predict early-stage clinical compounds, as well as recent FDA-approved drugs, to identify potential DILI.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Fígado/efeitos dos fármacos , Aprendizado de Máquina , Algoritmos , Teorema de Bayes , Biofarmácia , Simulação por Computador , Bases de Dados Factuais , Bases de Dados de Produtos Farmacêuticos , Aprovação de Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Fígado/patologia , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA