Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Infect Chemother ; 29(5): 549-553, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36871824

RESUMO

Severe fever with thrombocytopenia syndrome is a hemorrhagic fever caused by a tick-borne infection. The causative agent, Dabie bandavirus, is also called the severe fever with thrombocytopenia syndrome virus (SFTSV). Ogawa et al. (2022) reported that levodopa, an antiparkinsonian drug with an o-dihydroxybenzene backbone, which is important for anti-SFTSV activity, inhibited SFTSV infection. Levodopa is metabolized by dopa decarboxylase (DDC) and catechol-O-methyltransferase (COMT) in vivo. We evaluated the anti-SFTSV efficacy of two DDC inhibitors, benserazide hydrochloride and carbidopa, and two COMT inhibitors, entacapone and nitecapone, which also have an o-dihydroxybenzene backbone. Only DDC inhibitors inhibited SFTSV infection with pretreatment of the virus (half-maximal inhibitory concentration [IC50]: 9.0-23.6 µM), whereas all the drugs inhibited SFTSV infection when infected cells were treated (IC50: 21.3-94.2 µM). Levodopa combined with carbidopa and/or entacapone inhibited SFTSV infection in both conditions: pretreatment of the virus (IC50: 2.9-5.8 µM) and treatment of infected cells (IC50: 10.7-15.4 µM). The IC50 of levodopa in the above-mentioned study for pretreatment of the virus and treatment of infected cells were 4.5 and 21.4 µM, respectively. This suggests that a synergistic effect was observed, especially for treatment of infected cells, although the effect is unclear for pretreatment of the virus. This study demonstrates the anti-SFTSV efficacy of levodopa-metabolizing enzyme inhibitors in vitro. These drugs may increase the time for which the levodopa concentration is maintained in vivo. The combination of levodopa and levodopa-metabolizing enzyme inhibitors might be a candidate for drug repurposing.


Assuntos
Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Humanos , Levodopa/farmacologia , Levodopa/uso terapêutico , Carbidopa , Catecol O-Metiltransferase/metabolismo , Febre Grave com Síndrome de Trombocitopenia/tratamento farmacológico , Catecóis/farmacologia , Catecóis/uso terapêutico , Inibidores Enzimáticos/uso terapêutico
2.
Sci Rep ; 12(1): 20243, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36424447

RESUMO

Entry of the hepatitis C virus (HCV) into host cells is a multistep process mediated by several host factors, including a tight junction protein claudin-1 (CLDN1). We repeatedly passaged HCV-JFH1-tau, an HCV substrain with higher infectivity, on Huh7.5.1-8 cells. A multi-passaged HCV-JFH1-tau lot was infectious to CLDN1-defective S7-A cells, non-permissive to original HCV-JFH1-tau infection. We identified a single mutation, M706L, in the E2 glycoprotein of the HCV-JFH1-tau lot as an essential mutation for infectivity to S7-A cells. The pseudovirus JFH1/M706L mutant could not infect human embryonic kidney 293 T (HEK293T) cells lacking CLDN family but infected HEK293T cells expressing CLDN1, CLDN6, or CLDN9. Thus, this mutant virus could utilize CLDN1, and other CLDN6 and CLDN9, making HCV possible to infect cells other than hepatocytes. iPS cells, one of the stem cells, do not express CLDN1 but express CLDN6 and other host factors required for HCV infection. We confirmed that the HCV-JFH1-tau-derived mutant with an M706L mutation infected iPS cells in a CLDN6-dependent manner. These results demonstrated that a missense mutation in E2 could broaden the CLDN member specificity for HCV infection. HCV may change its receptor requirement through a single amino acid mutation and infect non-hepatic cells.


Assuntos
Claudina-1 , Hepacivirus , Hepatite C , Proteínas do Envelope Viral , Humanos , Claudina-1/genética , Células HEK293 , Hepacivirus/genética , Hepatite C/genética , Mutação de Sentido Incorreto , Proteínas do Envelope Viral/genética
3.
Int J Mol Sci ; 24(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36613459

RESUMO

Peracetic acid (PAA) disinfectants are effective against a wide range of pathogenic microorganisms, including bacteria, fungi, and viruses. Several studies have shown the efficacy of PAA against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); however, its efficacy in SARS-CoV-2 variants and the molecular mechanism of action of PAA against SARS-CoV-2 have not been investigated. SARS-CoV-2 infection depends on the recognition and binding of the cell receptor angiotensin-converting enzyme 2 (ACE2) via the receptor-binding domain (RBD) of the spike protein. Here, we demonstrated that PAA effectively suppressed pseudotyped virus infection in the Wuhan type and variants, including Delta and Omicron. Similarly, PAA reduced the authentic viral load of SARS-CoV-2. Computational analysis suggested that the hydroxyl radicals produced by PAA cleave the disulfide bridges in the RBD. Additionally, the PAA treatment decreased the abundance of the Wuhan- and variant-type spike proteins. Enzyme-linked immunosorbent assay showed direct inhibition of RBD-ACE2 interactions by PAA. In conclusion, the PAA treatment suppressed SARS-CoV-2 infection, which was dependent on the inhibition of the interaction between the spike RBD and ACE2 by inducing spike protein destabilization. Our findings provide evidence of a potent disinfection strategy against SARS-CoV-2.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Ácido Peracético/farmacologia , Enzima de Conversão de Angiotensina 2 , SARS-CoV-2 , Ligação Proteica
4.
Biochem Biophys Res Commun ; 505(1): 81-86, 2018 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-30241938

RESUMO

Reelin is a secreted protein essential for the development and function of the mammalian brain. The receptors for Reelin, apolipoprotein E receptor 2 and very low-density lipoprotein receptor, belong to the low-density lipoprotein receptor family, but it is not known whether Reelin is involved in the brain lipid metabolism. In the present study, we performed lipidomic analysis of the cerebral cortex of wild-type and Reelin-deficient (reeler) mice, and found that reeler mice exhibited several compositional changes in phospholipids. First, the ratio of phospholipids containing one saturated fatty acid (FA) and one docosahexaenoic acid (DHA) or arachidonic acid (ARA) decreased. Secondly, the ratio of phospholipids containing one monounsaturated FA (MUFA) and one DHA or ARA increased. Thirdly, the ratio of phospholipids containing 5,8,11-eicosatrienoic acid, or Mead acid (MA), increased. Finally, the expression of stearoyl-CoA desaturase-1 (SCD-1) increased. As the increase of MA is seen as an index of polyunsaturated FA (PUFA) deficiency, and the expression of SCD-1 is suppressed by PUFA, these results strongly suggest that the loss of Reelin leads to PUFA deficiency. Hence, MUFA and MA are synthesized in response to this deficiency, in part by inducing SCD-1 expression. This is the first report of changes of FA composition in the reeler mouse brain and provides a basis for further investigating the new role of Reelin in the development and function of the brain.


Assuntos
Encéfalo/metabolismo , Moléculas de Adesão Celular Neuronais/deficiência , Proteínas da Matriz Extracelular/deficiência , Lipídeos/química , Proteínas do Tecido Nervoso/deficiência , Serina Endopeptidases/deficiência , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/metabolismo , Animais , Ácido Araquidônico/metabolismo , Encéfalo/embriologia , Moléculas de Adesão Celular Neuronais/genética , Ácidos Docosa-Hexaenoicos/metabolismo , Proteínas da Matriz Extracelular/genética , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Metabolismo dos Lipídeos , Camundongos Endogâmicos ICR , Camundongos Mutantes Neurológicos , Proteínas do Tecido Nervoso/genética , Fosfolipídeos/metabolismo , Proteína Reelina , Serina Endopeptidases/genética , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo
5.
Neurosci Res ; 110: 11-7, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27033969

RESUMO

CUB and Sushi multiple domains 3 (CSMD3) is a large protein expressed in fetal and adult brain. Recently, mutations of the CSMD3 gene were identified in schizophrenia and autism patients. However, biochemical properties and functions of the CSMD3 protein remain unknown. Here, we demonstrate that CSMD3 is an oligomeric type I transmembrane protein localized in the apical dendrites of hippocampal pyramidal neurons in the postnatal brain. In cultured hippocampal neurons, CSMD3 is expressed only after 7 days in vitro. Overexpression of CSMD3 induced dendritic branching in hippocampal neurons. Regulation of dendritic morphology by CSMD3 depended on the presence of its extracellular region, while CSMD3 intracellular region was dispensable for this activity. These results suggest that CSMD3 acts as a co-receptor of an unidentified membrane protein to regulate dendrite development. Therefore, malfunctions of CSMD3 may be one of the factors in the pathogenesis of psychiatric disorders.


Assuntos
Dendritos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Animais , Células Cultivadas , Dendritos/ultraestrutura , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Proteínas de Membrana/fisiologia , Camundongos Endogâmicos ICR , Neurônios/metabolismo , Neurônios/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...