Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; 24(23): e202300511, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37738022

RESUMO

8-Oxoguanosine is the most common oxidatively generated base damage and pairs with complementary cytidine within duplex DNA. The 8-oxoguanosine-cytidine lesion, if not recognized and removed, not only leads to G-to-T transversion mutations but renders the base pair being more vulnerable to the ionizing radiation and singlet oxygen (1 O2 ) damage. Herein, reaction dynamics of a prototype Watson-Crick base pair [9MOG ⋅ 1MC]⋅+ , consisting of 9-methyl-8-oxoguanine radical cation (9MOG⋅+ ) and 1-methylcystosine (1MC), was examined using mass spectrometry coupled with electrospray ionization. We first detected base-pair dissociation in collisions with the Xe gas, which provided insight into intra-base pair proton transfer of 9MOG⋅+ ⋅ 1MC ← → ${{\stackrel{ {\rightarrow} } { {\leftarrow} } } }$ [9MOG - HN1 ]⋅ ⋅ [1MC+HN3' ]+ and subsequent non-statistical base-pair separation. We then measured the reaction of [9MOG ⋅ 1MC]⋅+ with 1 O2 , revealing the two most probable pathways, C5-O2 addition and HN7 -abstraction at 9MOG. Reactions were entangled with the two forms of 9MOG radicals and base-pair structures as well as multi-configurations between open-shell radicals and 1 O2 (that has a mixed singlet/triplet character). These were disentangled by utilizing approximately spin-projected density functional theory, coupled-cluster theory and multi-referential electronic structure modeling. The work delineated base-pair structural context effects and determined relative reactivity toward 1 O2 as [9MOG - H]⋅>9MOG⋅+ >[9MOG - HN1 ]⋅ ⋅ [1MC+HN3' ]+ ≥9MOG⋅+ ⋅ 1MC.


Assuntos
Citosina , Prótons , Pareamento de Bases , Citosina/química , Cátions , Citidina
2.
J Phys Chem B ; 126(29): 5458-5472, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35849846

RESUMO

In DNA, guanine is the most susceptible to oxidative damage by exogenously and endogenously produced electronically excited singlet oxygen (1O2). The reaction mechanism and the product outcome strongly depend on the nucleobase ionization state and structural context. Previously, exposure of a monomeric 9-methylguanine radical cation (9MG•+, a model guanosine compound) to 1O2 was found to result in the formation of an 8-peroxide as the initial product. The present work explores the 1O2 oxidation of 9MG•+ and its dehydrogenated neutral form [9MG - H]• within a Watson-Crick base pair consisting of one-electron-oxidized 9-methylguanine-1-methylcytosine [9MG·1MC]•+. Emphasis is placed on entangling the base pair structural context and intra-base pair proton transfer with and consequences thereof on the singlet oxygenation of guanine radical species. Electrospray ionization coupled with guided-ion beam tandem mass spectrometry was used to study the formation and reaction of guanine radical species in the gas phase. The 1O2 oxidation of both 9MG•+ and [9MG - H]• is exothermic and proceeds barrierlessly either in an isolated monomer or within a base pair. Single- and multi-referential theories were tested for treating spin contaminations and multi-configurations occurring in radical-1O2 interactions, and reaction potential energy surfaces were mapped out to support experimental findings. The work provides a comprehensive profile for the singlet oxygenation of guanine radicals in different charge states and in the absence and the presence of base pairing. All results point to an 8-peroxide as the major oxidation product in the experiment, and the oxidation becomes slightly more favorable in a neutral radical form. On the basis of a variety of reaction pathways and product profiles observed in the present and previous studies, the interplay between guanine structure, base pairing, and singlet oxygenation and its biological implications are discussed.


Assuntos
Guanina , Prótons , Pareamento de Bases , Cátions/química , Guanina/análogos & derivados , Guanina/química , Peróxidos
3.
Phys Chem Chem Phys ; 24(16): 9263-9276, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35403654

RESUMO

It has been shown previously in protonated, deprotonated and ionized guanine-cytosine base pairs that intra-base pair proton transfer from the N1-H at the Watson-Crick edge of guanine to the complementary nucleobase prompts non-statistical dissociation of the base-pair system, and the dissociation of a proton-transferred base-pair structure is kinetically more favored than that of the starting, conventional base-pair structure. However, the fundamental chemistry underlying this anomalous and intriguing kinetics has not been completely revealed, which warrants the examination of more base-pair systems in different structural contexts in order to derive a generalized base-pair structure-kinetics correlation. The purpose of the present work is to expand the investigation to the non-canonical homodimeric and heterodimeric radical cations of 9-methylguanine (9MG) and 9-methyl-8-oxoguanine (9MOG), i.e., [9MG·9MG]˙+, [9MOG·9MG]˙+ and [9MOG·9MOG]˙+. Experimentally, collision-induced dissociation tandem mass spectrometry coupled with an electrospray ionization (ESI) source was used for the formation of base-pair radical cations, followed by detection of dissociation product ions and cross sections in the collisions with Xe gas under single ion-molecule collision conditions and as a function of the center-of-mass collision energy. Computationally, density functional theory and coupled cluster theory were used to calculate and identify probable base-pair structures and intra-base pair proton transfer and hydrogen transfer reactions, followed by kinetics modeling to explore the properties of dissociation transition states and kinetic factors. The significance of this work is twofold: it provides insight into base-pair opening kinetics in three biologically-important, non-canonical systems upon oxidative and ionization damage; and it links non-statistical dissociation to intra-base pair proton-transfer originating from the N1-H at the Watson-Crick edge of 8-oxoguanine, enhancing understanding towards the base-pair fragmentation assisted by proton transfer.


Assuntos
Guanina , Prótons , Pareamento de Bases , Cátions/química , Citosina/química , Guanina/análogos & derivados , Guanina/química
4.
J Phys Chem A ; 126(1): 68-79, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-34941276

RESUMO

8-Bromoguanosine is generated in vivo as a biomarker for early inflammation. Its formation and secondary reactions lead to a variety of biological sequelae at inflammation sites, most of which are mutagenic and linked to cancer. Herein, we report the formation of radical cations of 8-bromoguanine (8BrG•+) and 8-bromoguanosine (8BrGuo•+) and their reactions toward the lowest excited singlet molecular oxygen (1O2)─a common reactive oxygen species generated in biological systems. This work aims to investigate synergistic, oxidatively generated damage of 8-brominated guanine and guanosine that may occur upon ionizing radiation, one-electron oxidation, and 1O2 oxidation. Capitalizing on measurements of reaction product ions and cross sections of 8BrG•+ and 8BrGuo•+ with 1O2 using guided-ion beam tandem mass spectrometry and augmented by computational modeling of the prototype reaction system, 8BrG•+ + 1O2, using the approximately spin-projected ωB97XD/6-31+G(d,p) density functional theory, the coupled cluster DLPNO-CCSD(T)/aug-cc-pVTZ and the multireference CASPT2(21,15)/6-31G**, probable reaction products, and potential energy surfaces (PESs) were mapped out. 8BrG•+ and 8BrGuo•+ present similar exothermic oxidation products, and their reaction efficiencies with 1O2 increase with decreasing collision energy. Both single- and multireference theories predicted that the two most energetically favorable reaction pathways correspond to 1O2-addition to the C8 and C5-positions of 8BrG•+, respectively. The CASPT2-calculated PES represents the best quantitative agreement with the experimental benchmark, in that the oxidation exothermicity is close to the water hydration energy of product ions and, thus, is able to eliminate a water ligand in the product ions.


Assuntos
Guanina , Guanosina , Cátions , Guanina/análogos & derivados , Guanosina/análogos & derivados , Cinética
5.
Chempluschem ; 86(9): 1243-1254, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34268890

RESUMO

8-Oxo-2'-deoxyguanosine (OG) is the most common DNA lesion. Notably, OG becomes more susceptible to oxidative damage than the undamaged nucleoside, forming mutagenic products in vivo. Herein the reactions of singlet O2 with the radical cations of 8-oxo-2'-deoxyguanosine (OG.+ ) and 9-methyl-8-oxoguanine (9MOG.+ ) were investigated using ion-molecule scattering mass spectrometry, from which barrierless, exothermic O2 -addition products were detected for both reaction systems. Corroborated by static reaction potential energy surface constructed using multi-reference CASPT2 theory and molecular dynamics simulated in the presence of the reactants' kinetic and internal energies, the C5-terminal O2 -addition was pinpointed as the most probable reaction pathway. By elucidating the reaction mechanism, kinetics and dynamics, and reaction products and energetics, this work constitutes the first report unraveling the synergetic damage of OG by ionizing radiation and singlet O2 .

6.
Phys Chem Chem Phys ; 23(15): 9365-9380, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33885080

RESUMO

We investigated the collision-induced dissociation (CID) reactions of a protonated Hoogsteen 9-methylguanine-1-methylcytosine base pair (HG-[9MG·1MC + H]+), which aims to address the mystery of the literature reported "anomaly" in product ion distributions and compare the kinetics of a Hoogsteen base pair with its Watson-Crick isomer WC-[9MG·1MC + H]+ (reported recently by Sun et al.; Phys. Chem. Chem. Phys., 2020, 22, 24986). Product ion cross sections and branching ratios were measured as a function of center-of-mass collision energy using guided-ion beam tandem mass spectrometry, from which base-pair dissociation energies were determined. Product structures and energetics were assessed using various theories, of which the composite DLPNO-CCSD(T)/aug-cc-pVTZ//ωB97XD/6-311++G(d,p) was adopted as the best-performing method for constructing a reaction potential energy surface. The statistical Rice-Ramsperger-Kassel-Marcus theory was found to provide a useful framework for rationalizing the dominating abundance of [1MC + H]+ over [9MG + H]+ in the fragment ions of HG-[9MG·1MC + H]+. The kinetics analysis proved the necessity for incorporating into kinetics modeling not only the static properties of reaction minima and transition states but more importantly, the kinetics of individual base-pair conformers that have formed in collisional activation. The analysis also pinpointed the origin of the statistical kinetics of HG-[9MG·1MC + H]+vs. the non-statistical behavior of WC-[9MG·1MC + H]+ in terms of their distinctively different intra-base-pair hydrogen-bonds and consequently the absence of proton transfer between the N1 position of 9MG and the N3' of 1MC in the Hoogsteen base pair. Finally, the Hoogsteen base pair was examined in the presence of a water ligand, i.e., HG-[9MG·1MC + H]+·H2O. Besides the same type of base-pair dissociation as detected in dry HG-[9MG·1MC + H]+, secondary methanol elimination was observed via the SN2 reaction of water with nucleobase methyl groups.


Assuntos
Citosina/análogos & derivados , Guanina/análogos & derivados , Pareamento de Bases , Citosina/química , Guanina/química , Cinética , Conformação Molecular , Prótons , Termodinâmica
7.
J Phys Chem A ; 125(7): 1564-1576, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33571415

RESUMO

Reactions of electronically excited singlet oxygen (1O2) with the radical cations of guanine (9HG•+), 9-methylguanine (9MG•+), 2'-deoxyguanosine (dGuo•+), and guanosine (Guo•+) were studied in the gas phase by a combination of guided-ion-beam mass spectrometric measurement of product ions and cross sections as a function of collision energy (Ecol) and electronic structure calculations of the reaction potential energy surface (PES) at various levels of theory. No product could be captured in the 1O2 reaction with bare 9HG•+ or 9MG•+, because energized products decayed rapidly to reactants before being detected. To overcome this unfavorable kinetics, monohydrated 9HG•+·H2O and 9MG•+·H2O were used as reactant ions, of which the peroxide product ions were stabilized by energy relaxation via elimination of the water ligand. Reaction cross sections for 9HG•+·H2O and 9MG•+·H2O decrease with increasing Ecol, becoming negligible above 0.6 eV. This indicates that the reactions are exothermic with no barriers above reactants and the heat of formation of the products is sufficiently large to overcome their water ligand elimination energy (0.7 eV). Peroxide product ions were also detected in the 1O2 reactions with unhydrated dGuo•+ and Guo•+, in which intramolecular vibrational redistribution was able to stabilize oxidation products. 9MG•+ was utilized as a model system to explore the reaction PES for the initial 1O2 addition to the guanine radical cation. Calculations were carried out using single-reference ωB97XD, RI-MP2, and DLPNO-CCSD(T) and multireference CASSCF and CASPT2. Although the same PES profile was obtained at different levels of theory, the energies of the mixed open- and closed-shell 1O2 reactant and the open-shell reaction intermediates, transition states, and products are sensitive to the theories. By taking into account both static and dynamic electron correlations, the CASPT2 PES has provided the best agreement with the experimentally measured reaction thermodynamics and predicted 8-peroxide as the most probable initial oxidation product of the guanine radical cation.

8.
Phys Chem Chem Phys ; 22(43): 24986-25000, 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33112302

RESUMO

A guided-ion beam tandem mass spectrometric study was performed on collision-induced dissociation (CID) of a protonated 9-methylguanine-1-methylcytosine Watson-Crick base pair (designated as WC-[9MG·1MC + H]+), from which dissociation pathways and dissociation energies were determined. Electronic structure calculations at the DFT, RI-MP2 and DLPNO-CCSD(T) levels of theory were used to identify product structures and delineate reaction mechanisms. Intra-base-pair proton transfer (PT) of WC-[9MG·1MC + H]+ results in conventional base-pair conformations that consist of hydrogen-bonded [9MG + H]+ and 1MC and proton-transferred conformations that are formed by PT from the N1 of [9MG + H]+ to the N3' of 1MC. Two types of conformers were distinguished by CID in which the conventional conformers produced [9MG + H]+ product ions whereas the proton-transferred conformers produced [1MC + H]+. The conventional conformers have a higher population (99.8%) and lower dissociation energy than the proton-transferred counterparts. However, in contrast to what was expected from the statistical dissociation of the equilibrium base-pair conformational ensemble, the CID product ions of WC-[9MG·1MC + H]+ were dominated by [1MC + H]+ rather than [9MG + H]+. This finding, alongside the non-statistical CID reported for deprotonated guanine-cytosine (Lu et al.; PCCP, 2016, 18, 32222) and guanine-cytosine radical cation (Sun et al.; PCCP, 2020, 22, 14875), reinforces that non-statistical dissociation is a distinctive feature of singly-charged Watson-Crick guanine-cytosine base pairs. It implies that intra-base-pair PT facilitates the formation of proton-transferred conformers in these systems and the ensuing conformers have loose transition states for dissociation. The monohydrate of WC-[9MG·1MC + H]+ preserves non-statistical CID kinetics and introduces collision-induced methanol elimination via the reaction of the water ligand with a methyl group.


Assuntos
Pareamento de Bases , Citosina/análogos & derivados , Guanina/análogos & derivados , Cátions/química , Citosina/química , Guanina/química , Prótons
9.
Phys Chem Chem Phys ; 22(26): 14875-14888, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32582893

RESUMO

A combined experimental and theoretical study is presented on the collision-induced dissociation (CID) of 9-methylguanine-1-methylcytosine base-pair radical cation (abbreviated as [9MG·1MC]˙+) and its monohydrate ([9MG·1MC]˙+·H2O) with Xe and Ar gases. Product ion mass spectra were measured as a function of collision energy using guided-ion beam tandem mass spectrometry, from which cross sections and threshold energies for various dissociation pathways were determined. Electronic structure calculations were performed at the DFT, RI-MP2 and DLPNO-CCSD(T) levels of theory to identify product structures and map out reaction potential energy surfaces. [9MG·1MC]˙+ has two structures: a conventional structure 9MG˙+·1MC (population 87%) consisting of hydrogen-bonded 9-methylguanine radical cation and neutral 1-methylcytosine, and a proton-transferred structure [9MG - H]˙·[1MC + H]+ (less stable, population 13%) formed by intra-base-pair proton transfer from the N1 of 9MG˙+ to the N3 of 1MC within 9MG˙+·1MC. The two structures have similar dissociation energies but can be distinguished in that 9MG˙+·1MC dissociates into 9MG˙+ and 1MC whereas [9MG - H]˙·[1MC + H]+ dissociates into neutral [9MG - H]˙ radical and protonated [1MC + H]+. An intriguing finding is that, in both Xe- and Ar-induced CID of [9MG·1MC]˙+, product ions were overwhelmingly dominated by [1MC + H]+, which is contrary to product distributions predicted using a statistical reaction model. Monohydration of [9MG·1MC]˙+ reversed the populations of the conventional structure (43%) vs. the proton-transferred structure (57%) and induced new reactions upon collisional activation, of which intra-base-pair hydrogen transfer produced [9MG + H]+ and the reaction of the water ligand with a methyl group in [9MG·1MC]˙+ led to methanol elimination from [9MG·1MC]˙+·H2O.


Assuntos
Citosina/análogos & derivados , Guanina/análogos & derivados , Prótons , Água/química , Pareamento de Bases , Citosina/química , Guanina/química , Ligação de Hidrogênio , Ligantes
10.
Phys Chem Chem Phys ; 20(43): 27510-27522, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30362479

RESUMO

The reactions of D2O with radical cations of guanine (9HG˙+), 9-methylguanine (9MG˙+), 2'-deoxyguanosine (dGuo˙+) and guanosine (Guo˙+) were studied in the gas phase, including measurements of reaction cross sections over a center-of-mass collision energy (Ecol) range from 0.1 to 2.0 eV and computation of reaction pathways at DLPNO-CCSD(T)/aug-cc-pVTZ//ωB97XD/6-31+G(d,p). Reaction efficiencies of all radical cations are well below unity (∼2% of collision rate), despite there being exoergic pathways. For each reactant ion, the energetically most favorable product channel corresponds to the formation of water complexes; however, this channel accounts for only 5% of the total cross section at the lowest Ecol and becomes negligible at high Ecol due to short complex lifetimes. The dominant product channel is H/D exchange that appears to be complex-mediated at low Ecol, but switches to a direct mechanism and accompanies keto-enol isomerization of the guanine moiety when Ecol increases. C8-hydroxylation, a minor yet the most biologically important channel, was observed for 9HG˙+; and its mechanism was elucidated in the presence of single and double water molecules, of which the second water eliminates the barrier for C8-addition via a proton shuttle mechanism. All reactions show strong dependence on radical structures, with overall reactivity being 9HG˙+ ≫ 9MG˙+ > dGuo˙+ ≈ Guo˙+. The reaction dynamics of 9HG˙+ and 9MG˙+ with water were simulated at Ecol = 0.1 eV using ωB97XD/6-31+G(d), to reveal complex formation at the early stage of the reaction and the effects of N9-substitution. Trajectory results suggest that the lack of a W9 complex (water bonded to N9-H) is responsible for the reduced reactivity of N9-substituted radical cations; but the relatively long-lived W16 complexes (water bonded to N1-H and C6-O) of dGuo˙+ and Guo˙+ may enhance keto-enol isomerization.


Assuntos
Cátions/química , Nucleosídeos de Purina/química , Água/química , Desoxiguanosina/química , Guanina/análogos & derivados , Guanina/química , Guanosina/química , Hidroxilação , Isomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...