Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Immunohorizons ; 8(3): 281-294, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38551395

RESUMO

Inhibitory proteins, such as programmed cell death protein 1 (PD-1), have been studied extensively in peripheral T cell responses to foreign Ags, self-Ags, and neoantigens. Notably, these proteins are first expressed during T cell development in the thymus. Reports suggest that PD-1 limits regulatory T cell (Treg) development, but the mechanism by which PD-1 exerts this function remains unknown. The present study expands the evaluation of murine PD-1 and its ligands in the thymus, demonstrating that some of the highest expressers of PD-1 and programmed death-ligand 1 are agonist selected cells. Surprisingly, we reveal a selective role for PD-1 in regulating the developmental niche only for Tregs because other agonist selected cell populations, such as NK T cells, remain unchanged. We also ruled out PD-1 as a regulator of proliferation or cell death of agonist selected Tregs and further demonstrated that PD-1-deficient Tregs have reduced TCR signaling. Unexpectedly, the data suggest that PD-1-deficient thymocytes produce elevated levels of IL-2, a Treg niche-limiting cytokine. Collectively, these data suggest a novel role for PD-1 in regulating IL-2 production and the concurrent agonist selection of murine thymic Tregs. This observation has implications for the use of checkpoint blockade in the context of cancer and infection.


Assuntos
Interleucina-2 , Receptor de Morte Celular Programada 1 , Linfócitos T Reguladores , Timo , Animais , Camundongos , Citocinas/metabolismo , Interleucina-2/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T Reguladores/imunologia , Timo/citologia , Timo/imunologia
3.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014233

RESUMO

While immune checkpoint inhibitors show success in treating a subset of patients with certain late-stage cancers, these treatments fail in many other patients as a result of mechanisms that have yet to be fully characterized. The process of CD8 T cell exhaustion, by which T cells become dysfunctional in response to prolonged antigen exposure, has been implicated in immunotherapy resistance. Single-cell RNA sequencing (scRNA-seq) produces an abundance of data to analyze this process; however, due to the complexity of the process, contributions of other cell types to a process within a single cell type cannot be simply inferred. We constructed an analysis framework to first rank human skin tumor samples by degree of exhaustion in tumor-infiltrating CD8 T cells and then identify immune cell type-specific gene-regulatory network patterns significantly associated with T cell exhaustion. Using this framework, we further analyzed scRNA-seq data from human tumor and chronic viral infection samples to compare the T cell exhaustion process between these two contexts. In doing so, we identified transcription factor activity in the macrophages of both tissue types associated with this process. Our framework can be applied beyond the tumor immune microenvironment to any system involving cell-cell communication, facilitating insights into key biological processes that underpin the effective treatment of cancer and other complicated diseases.

4.
bioRxiv ; 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37904975

RESUMO

Immune-based therapies induce durable remissions in subsets of patients across multiple malignancies. However, there is limited efficacy of immunotherapy in metastatic castrate-resistant prostate cancer (mCRPC), manifested by an enrichment of immunosuppressive (M2) tumor- associated macrophages (TAM) in the tumor immune microenvironment (TME). Therefore, therapeutic strategies to overcome TAM-mediated immunosuppression are critically needed in mCRPC. Here we discovered that NLR family pyrin domain containing 3 (NLRP3), an innate immune sensing protein, is highly expressed in TAM from metastatic PC patients treated with standard-of-care androgen deprivation therapy (ADT). Importantly, ex vivo studies revealed that androgen receptor (AR) blockade in TAM upregulates NLRP3 expression, but not inflammasome activity, and concurrent AR blockade/NLRP3 agonist (NLRP3a) treatment promotes cancer cell phagocytosis by immunosuppressive M2 TAM. In contrast, NLRP3a monotherapy was sufficient to enhance phagocytosis of cancer cells in anti-tumor (M1) TAM, which exhibit high de novo NLRP3 expression. Critically, combinatorial treatment with ADT/NLRP3a in a murine model of advanced PC resulted in significant tumor control, with tumor clearance in 55% of mice via TAM phagocytosis. Collectively, our results demonstrate NLRP3 as an AR-regulated "macrophage phagocytic checkpoint", inducibly expressed in TAM by ADT and activated by NLRP3a treatment, the combination resulting in TAM-mediated phagocytosis and tumor control.

5.
PLoS One ; 18(7): e0282550, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37498849

RESUMO

Sea star wasting syndrome (SSWS) can cause widespread mortality in starfish populations as well as long-lasting changes to benthic community structure and dynamics. SSWS symptoms have been documented in numerous species and locations around the world, but to date there is only one record of SSWS from the Antarctic and this outbreak was associated with volcanically-driven high temperature anomalies. Here we report outbreaks of SSWS-like symptoms that affected ~30% of individuals of Odontaster validus at two different sites in McMurdo Sound, Antarctica in 2019 and 2022. Unlike many SSWS events in other parts of the world, these outbreaks were not associated with anomalously warm temperatures. Instead, we suggest they may have been triggered by high nutrient input events on a local scale. Although the exact cause of these outbreaks is not known, these findings are of great concern because of the keystone role of O. validus and the slow recovery rate of Antarctic benthic ecosystems to environmental stressors.


Assuntos
Ecossistema , Síndrome de Emaciação , Humanos , Animais , Regiões Antárticas , Estrelas-do-Mar , Caquexia
6.
Trends Cancer ; 9(8): 666-678, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37173189

RESUMO

The thymus is responsible for generating a diverse T cell repertoire that is tolerant to self, but capable of responding to various immunologic insults, including cancer. Checkpoint blockade has changed the face of cancer treatment by targeting inhibitory molecules, which are known to regulate peripheral T cell responses. However, these inhibitory molecules and their ligands are expressed during T cell development in the thymus. In this review, we describe the underappreciated role of checkpoint molecule expression during the formation of the T cell repertoire and detail the importance of inhibitory molecules in regulating T cell lineage commitment. Understanding how these molecules function in the thymus may inform therapeutic strategies for better patient outcomes.


Assuntos
Proteínas de Checkpoint Imunológico , Neoplasias , Humanos , Proteínas de Checkpoint Imunológico/metabolismo , Linfócitos T , Neoplasias/genética , Neoplasias/terapia , Ativação Linfocitária , Imunoterapia
7.
IDCases ; 32: e01796, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37193002

RESUMO

We report an important case of periventricular white matter damage in a 1-month-old infant, demonstrated on high quality structural (T2) and diffusion weighted magnetic resonance imaging. The infant was born at term following an uneventful pregnancy and discharged home shortly after, but was brought to the paediatric emergency department five days after birth with seizures and respiratory distress, testing positive for COVID-19 infection on PCR. These images highlight the need to consider brain MRI in all infants with symptomatic SARS-Cov-2 infection, and show how this infection can lead to extensive white matter damage in the context of multisystem inflammation.

8.
J Immunol ; 210(4): 496-503, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36548468

RESUMO

The thymus is a hormone-sensitive organ, which involutes with age in response to production of sex steroids. Thymic involution leads to a decrease in the generation of recent thymic emigrants (RTEs), resulting in a reduced response to immune challenges such as cancer. Interestingly, the standard of care for prostate cancer patients is androgen deprivation therapy (ADT), which leads to thymic regeneration and an increase in thymic output. It remains unknown whether these newly produced T cells can contribute to the antitumor immune response. This study defines the kinetics of thymic regeneration in response to ADT in mice, determining that thymic epithelial cell proliferation is critical for the increase in RTE output. Using a mouse model to track RTE in vivo, we demonstrate that these newly generated RTEs can traffic to tumors, where they become activated and produce effector cytokines at levels similar to more mature T cells. Collectively, these data suggest that RTEs produced from ADT-induced thymic regeneration could be harnessed for the antitumor immune response.


Assuntos
Neoplasias da Próstata , Timo , Humanos , Masculino , Androgênios , Antagonistas de Androgênios/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Linfócitos T
9.
Biol Bull ; 243(2): 85-103, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36548975

RESUMO

AbstractOxygen bioavailability is declining in aquatic systems worldwide as a result of climate change and other anthropogenic stressors. For aquatic organisms, the consequences are poorly known but are likely to reflect both direct effects of declining oxygen bioavailability and interactions between oxygen and other stressors, including two-warming and acidification-that have received substantial attention in recent decades and that typically accompany oxygen changes. Drawing on the collected papers in this symposium volume ("An Oxygen Perspective on Climate Change"), we outline the causes and consequences of declining oxygen bioavailability. First, we discuss the scope of natural and predicted anthropogenic changes in aquatic oxygen levels. Although modern organisms are the result of long evolutionary histories during which they were exposed to natural oxygen regimes, anthropogenic change is now exposing them to more extreme conditions and novel combinations of low oxygen with other stressors. Second, we identify behavioral and physiological mechanisms that underlie the interactive effects of oxygen with other stressors, and we assess the range of potential organismal responses to oxygen limitation that occur across levels of biological organization and over multiple timescales. We argue that metabolism and energetics provide a powerful and unifying framework for understanding organism-oxygen interactions. Third, we conclude by outlining a set of approaches for maximizing the effectiveness of future work, including focusing on long-term experiments using biologically realistic variation in experimental factors and taking truly cross-disciplinary and integrative approaches to understanding and predicting future effects.


Assuntos
Organismos Aquáticos , Mudança Climática , Animais , Evolução Biológica , Oxigênio , Estresse Fisiológico , Ecossistema
10.
Neoplasia ; 32: 100822, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35908379

RESUMO

Recent studies in cancer patients and animal models demonstrate that intestinal microbiota influence the therapeutic efficacy of cancer treatments, including immune checkpoint inhibition. However, no studies to-date have investigated relationships between gastrointestinal microbiota composition and response to checkpoint inhibition in advanced metastatic castrate resistant prostate cancer (mCRPC). We performed 16S rRNA gene sequencing of fecal DNA from 23 individuals with mCRPC progressing on enzalutamide and just prior to treatment with anti-PD-1 (pembrolizumab) to determine whether certain features of the microbiome are associated with treatment response (defined as serum PSA decrease >50% at any time on treatment or radiographic response per RECIST V.1.1). Global bacterial composition was similar between responders and non-responders, as assessed by multiple alpha and beta diversity metrics. However, certain bacterial taxa identified by sequencing across multiple 16S rRNA hypervariable regions were consistently associated with response, including the archetypal oral bacterium Streptococcus salivarius. Quantitative PCR (qPCR) of DNA extracts from fecal samples confirmed increased Streptococcus salivarius fecal levels in responders, whereas qPCR of oral swish DNA extracts showed no relationship between oral Streptococcus salivarius levels and response status. Contrary to previous reports in other cancer types, Akkermansia muciniphila levels were reduced in responder samples as assessed by both 16S rRNA sequencing and qPCR. We further analyzed our data in the context of a previously published "integrated index" describing bacteria associated with response and non-response to checkpoint inhibition. We found that the index was not reflective of response status in our cohort. Lastly, we demonstrate little change in the microbiome over time, and with pembrolizumab treatment. Our results suggest that the association between fecal microbiota and treatment response to immunotherapy may be unique to cancer type and/or previous treatment history.


Assuntos
Microbioma Gastrointestinal , Neoplasias de Próstata Resistentes à Castração , Animais , Anticorpos Monoclonais Humanizados , Benzamidas , Humanos , Masculino , Nitrilas , Feniltioidantoína , RNA Ribossômico 16S
11.
Nature ; 606(7915): 791-796, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35322234

RESUMO

Immune checkpoint blockade has revolutionized the field of oncology, inducing durable anti-tumour immunity in solid tumours. In patients with advanced prostate cancer, immunotherapy treatments have largely failed1-5. Androgen deprivation therapy is classically administered in these patients to inhibit tumour cell growth, and we postulated that this therapy also affects tumour-associated T cells. Here we demonstrate that androgen receptor (AR) blockade sensitizes tumour-bearing hosts to effective checkpoint blockade by directly enhancing CD8 T cell function. Inhibition of AR activity in CD8 T cells prevented T cell exhaustion and improved responsiveness to PD-1 targeted therapy via increased IFNγ expression. AR bound directly to Ifng and eviction of AR with a small molecule significantly increased cytokine production in CD8 T cells. Together, our findings establish that T cell intrinsic AR activity represses IFNγ expression and represents a novel mechanism of immunotherapy resistance.


Assuntos
Linfócitos T CD8-Positivos , Imunoterapia , Neoplasias da Próstata , Receptores Androgênicos , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Interferon gama , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Falha de Tratamento
12.
Nat Biotechnol ; 40(4): 527-538, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34764492

RESUMO

Single-cell RNA sequencing (scRNA-seq) distinguishes cell types, states and lineages within the context of heterogeneous tissues. However, current single-cell data cannot directly link cell clusters with specific phenotypes. Here we present Scissor, a method that identifies cell subpopulations from single-cell data that are associated with a given phenotype. Scissor integrates phenotype-associated bulk expression data and single-cell data by first quantifying the similarity between each single cell and each bulk sample. It then optimizes a regression model on the correlation matrix with the sample phenotype to identify relevant subpopulations. Applied to a lung cancer scRNA-seq dataset, Scissor identified subsets of cells associated with worse survival and with TP53 mutations. In melanoma, Scissor discerned a T cell subpopulation with low PDCD1/CTLA4 and high TCF7 expression associated with an immunotherapy response. Beyond cancer, Scissor was effective in interpreting facioscapulohumeral muscular dystrophy and Alzheimer's disease datasets. Scissor identifies biologically and clinically relevant cell subpopulations from single-cell assays by leveraging phenotype and bulk-omics datasets.


Assuntos
Melanoma , Análise de Célula Única , Perfilação da Expressão Gênica , Humanos , Melanoma/genética , Fenótipo , Análise de Sequência de RNA
13.
Cancer Immunol Res ; 9(11): 1245-1251, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34544686

RESUMO

Recent success in the use of immunotherapy for a broad range of cancers has propelled the field of cancer immunology to the forefront of cancer research. As more and more young investigators join the community of cancer immunologists, the Arthur L. Irving Family Foundation Cancer Immunology Symposium provided a platform to bring this expanding and vibrant community together and support the development of the future leaders in the field. This commentary outlines the lessons that emerged from the inaugural symposium highlighting the areas of scientific and career development that are essential for professional growth in the field of cancer immunology and beyond. Leading scientists and clinicians in the field provided their experience on the topics of scientific trajectory, career trajectory, publishing, fundraising, leadership, mentoring, and collaboration. Herein, we provide a conceptual and practical framework for career development to the broader scientific community.


Assuntos
Alergia e Imunologia/educação , Pesquisa Biomédica/métodos , Neoplasias/epidemiologia , Médicos/organização & administração , Humanos , Liderança
14.
Int J Obes (Lond) ; 45(8): 1773-1781, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34002038

RESUMO

OBJECTIVE: The prevalence of obesity is growing globally. Adiposity increases the risk for metabolic syndrome, type 2 diabetes and cardiovascular disease. Adipose tissue distribution influences systemic metabolism and impacts metabolic disease risk. The link between sexual dimorphisms of adiposity and metabolism is poorly defined. We hypothesise that depot-specific adipose tissue mitochondrial function contributes to the sexual dimorphism of metabolic flexibility in obesity. METHODS: Male and female mice fed high fat diet (HFD) or standard diet (STD) from 8-18 weeks of age underwent whole animal calorimetry and high-resolution mitochondrial respirometry analysis on adipose tissue depots. To determine translatability we used RT-qPCR to examine key brown adipocyte-associated gene expression: peroxisome proliferator-activated receptor co-activator 1α, Uncoupling protein 1 and cell death inducing DFFA like effector a in brown adipose tissue (BAT) and subcutaneous adipose tissue (sWAT) of 18-week-old mice and sWAT from human volunteers. RESULTS: Male mice exhibited greater weight gain compared to female mice when challenged with HFD. Relative to increased body mass, the adipose to body weight ratio for BAT and sWAT depots was increased in HFD-fed males compared to female HFD-fed mice. Oxygen consumption, energy expenditure, respiratory exchange ratio and food consumption did not differ between males and females fed HFD. BAT mitochondria from obese females showed increased Complex I & II respiration and maximal respiration compared to lean females whereas obese males did not exhibit adaptive mitochondrial BAT respiration. Sexual dimorphism in BAT-associated gene expression in sWAT was also associated with Body Mass Index in humans. CONCLUSIONS: We show that sexual dimorphism of weight gain is reflected in mitochondrial respiration analysis. Female mice have increased metabolic flexibility to adapt to changes in energy intake by regulating energy expenditure through increased complex II and maximal mitochondrial respiration within BAT when HFD challenged and increased proton leak in sWAT mitochondria.


Assuntos
Tecido Adiposo , Mitocôndrias/metabolismo , Obesidade/metabolismo , Caracteres Sexuais , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos
15.
Nat Commun ; 12(1): 1905, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33772024

RESUMO

Brown and beige adipose tissue are emerging as distinct endocrine organs. These tissues are functionally associated with skeletal muscle, adipose tissue metabolism and systemic energy expenditure, suggesting an interorgan signaling network. Using metabolomics, we identify 3-methyl-2-oxovaleric acid, 5-oxoproline, and ß-hydroxyisobutyric acid as small molecule metabokines synthesized in browning adipocytes and secreted via monocarboxylate transporters. 3-methyl-2-oxovaleric acid, 5-oxoproline and ß-hydroxyisobutyric acid induce a brown adipocyte-specific phenotype in white adipocytes and mitochondrial oxidative energy metabolism in skeletal myocytes both in vitro and in vivo. 3-methyl-2-oxovaleric acid and 5-oxoproline signal through cAMP-PKA-p38 MAPK and ß-hydroxyisobutyric acid via mTOR. In humans, plasma and adipose tissue 3-methyl-2-oxovaleric acid, 5-oxoproline and ß-hydroxyisobutyric acid concentrations correlate with markers of adipose browning and inversely associate with body mass index. These metabolites reduce adiposity, increase energy expenditure and improve glucose and insulin homeostasis in mouse models of obesity and diabetes. Our findings identify beige adipose-brown adipose-muscle physiological metabokine crosstalk.


Assuntos
Tecido Adiposo Bege/metabolismo , Tecido Adiposo Marrom/metabolismo , Metabolismo Energético/genética , Homeostase/genética , Transdução de Sinais/genética , Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Tecido Adiposo Bege/citologia , Tecido Adiposo Marrom/citologia , Animais , Linhagem Celular , Células Cultivadas , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Perfilação da Expressão Gênica/métodos , Humanos , Masculino , Espectrometria de Massas , Metabolômica/métodos , Camundongos Endogâmicos C57BL
16.
Eur J Immunol ; 51(6): 1473-1481, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33684223

RESUMO

Therapeutic antibodies blocking PD-1-/PD-L1 interaction have achieved remarkable clinical success in cancer. In addition to blocking a target molecule, some isotypes of antibodies can activate complement, NK cells or phagocytes, resulting in death of the cell expressing the antibody's target. Human anti-PD-1 therapeutics use antibody isotypes designed to minimize such antibody-dependent lysis. In contrast, anti-PD-1 reagents used in mice are derived from multiple species, with different isotypes, and are not engineered to reduce target cell death: few studies analyze or discuss how antibody species and isotype may impact data interpretation. We demonstrate here that anti-PD-1 therapy to promote activation and proliferation of murine PD-1-expressing CD8 T cells sometimes led instead to a loss of antigen specific cells. This phenomenon was seen in two tumor models and a model of virus infection, and varied with the clone of anti-PD-1 antibody. Additionally, we compared competition among anti-PD-1 clones to find a combination that allows detection of PD-1-expressing cells despite the presence of blocking anti-PD1 antibodies in vivo. These data bring attention to the possibility of unintended target cell depletion with some commonly used anti-mouse PD-1 clones, and should provide a valuable resource for the design and interpretation of anti-PD-1 studies in mice.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por Herpesviridae/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Muromegalovirus/fisiologia , Sarcoma/imunologia , Neoplasias Cutâneas/imunologia , Animais , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/transplante , Morte Celular , Linhagem Celular Tumoral , Cricetinae , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Infecções por Herpesviridae/terapia , Humanos , Imunoglobulina G/metabolismo , Isotipos de Imunoglobulinas/metabolismo , Metilcolantreno , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Ratos , Sarcoma/terapia , Neoplasias Cutâneas/terapia
17.
Mol Biol Evol ; 38(2): 686-701, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-32915961

RESUMO

Despite significant advances in invertebrate phylogenomics over the past decade, the higher-level phylogeny of Pycnogonida (sea spiders) remains elusive. Due to the inaccessibility of some small-bodied lineages, few phylogenetic studies have sampled all sea spider families. Previous efforts based on a handful of genes have yielded unstable tree topologies. Here, we inferred the relationships of 89 sea spider species using targeted capture of the mitochondrial genome, 56 conserved exons, 101 ultraconserved elements, and 3 nuclear ribosomal genes. We inferred molecular divergence times by integrating morphological data for fossil species to calibrate 15 nodes in the arthropod tree of life. This integration of data classes resolved the basal topology of sea spiders with high support. The enigmatic family Austrodecidae was resolved as the sister group to the remaining Pycnogonida and the small-bodied family Rhynchothoracidae as the sister group of the robust-bodied family Pycnogonidae. Molecular divergence time estimation recovered a basal divergence of crown group sea spiders in the Ordovician. Comparison of diversification dynamics with other marine invertebrate taxa that originated in the Paleozoic suggests that sea spiders and some crustacean groups exhibit resilience to mass extinction episodes, relative to mollusk and echinoderm lineages.


Assuntos
Artrópodes/genética , Filogenia , Animais , Feminino , Genoma , Masculino
19.
Adv Funct Mater ; 30(14)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33071708

RESUMO

The majority of 3D-printed biodegradable biomaterials are brittle, limiting their potential application to compliant tissues. Poly (glycerol sebacate) acrylate (PGSA) is a synthetic biodegradable and biocompatible elastomer, compatible with light-based 3D printing. In this work we employed digital-light-processing (DLP)-based 3D printing to create a complex PGSA network structure. Nature-inspired double network (DN) structures with two geometrically interconnected segments with different mechanical properties were printed from the same material in a single shot. Such capability has not been demonstrated by any other fabrication technique. The biocompatibility of PGSA after 3D printing was confirmed via cell-viability analysis. We used a finite element analysis (FEA) model to predict the failure of the DN structure under uniaxial tension. FEA confirmed the soft segments act as sacrificial elements while the hard segments retain structural integrity. The simulation demonstrated that the DN design absorbs 100% more energy before rupture than the network structure made by single exposure condition (SN), doubling the toughness of the overall structure. Using the FEA-informed design, a new DN structure was printed and the FEA predicted tensile test results agreed with tensile testing of the printed structure. This work demonstrated how geometrically-optimized material design can be easily and rapidly achieved by using DLP-based 3D printing, where well-defined patterns of different stiffnesses can be simultaneously formed using the same elastic biomaterial, and overall mechanical properties can be specifically optimized for different biomedical applications.

20.
Front Oncol ; 10: 1381, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850444

RESUMO

Background: Phase 3 studies of immune checkpoint inhibitors have not shown a survival benefit in prostate cancer, but some patients have a profound anticancer response. Patients and Methods: We evaluated the efficacy of the CTLA-4 targeted agent, ipilimumab, in metastatic prostate cancer patients who had an incomplete biochemical response to initial androgen deprivation therapy (ADT) alone. Ten patients were enrolled, each treated with ipilimumab 10 mg/kg (every 3 weeks for up to 4 doses) with maintenance ipilimumab every 12 weeks for non-progressing patients. The primary endpoint was proportion of patients with an undetectable PSA. The total sample size was 30 patients, but there was an interim analysis planned at 10 for futility. If none of the 10 patients achieved an undetectable PSA, the study would be halted. Results: The study was halted at the interim analysis as none of the 10 patients achieved the primary endpoint, but 30% of patients demonstrated a >50% reduction in PSA, with one patient achieving a >90% reduction in PSA. Peripheral blood mononuclear cells (PBMC) examined by mass cytometry showed that patients with clinical responses had an increase in effector memory T-cell subsets as well as an increase in T-cell expression of T-bet, suggesting induction of a Th1 response. Conclusions: This study provides further evidence that ipilimumab has activity in some patients with prostate cancer and provides further rationale for the development of future studies aimed at identifying a subset of patients with CPRC that are more likely to derive a benefit from treatment with ipilimumab. Implications for Practice: There is insufficient evidence to use ipilimumab in prostate cancer in routine practice. Trial Registration: ClinicalTrials.gov, NCT01498978. Registered 26 December 2011. https://www.clinicaltrials.gov/ct2/show/NCT01498978?term=julie+graff&rank=3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...