Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Front Toxicol ; 6: 1373325, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665213

RESUMO

With the use of in vitro new approach methodologies (NAMs) for the assessment of non-combustible next-generation nicotine delivery products, new extrapolation methods will also be required to interpret and contextualize the physiological relevance of these results. Quantitative in vitro to in vivo extrapolation (QIVIVE) can translate in vitro concentrations into in-life exposures with physiologically-based pharmacokinetic (PBPK) modelling and provide estimates of the likelihood of harmful effects from expected exposures. A major challenge for evaluating inhalation toxicology is an accurate assessment of the delivered dose to the surface of the cells and the internalized dose. To estimate this, we ran the multiple-path particle dosimetry (MPPD) model to characterize particle deposition in the respiratory tract and developed a PBPK model for nicotine that was validated with human clinical trial data for cigarettes. Finally, we estimated a Human Equivalent Concentration (HEC) and predicted plasma concentrations based on the minimum effective concentration (MEC) derived after acute exposure of BEAS-2B cells to cigarette smoke (1R6F), or heated tobacco product (HTP) aerosol at the air liquid interface (ALI). The MPPD-PBPK model predicted the in vivo data from clinical studies within a factor of two, indicating good agreement as noted by WHO International Programme on Chemical Safety (2010) guidance. We then used QIVIVE to derive the exposure concentration (HEC) that matched the estimated in vitro deposition point of departure (POD) (MEC cigarette = 0.38 puffs or 11.6 µg nicotine, HTP = 22.9 puffs or 125.6 µg nicotine) and subsequently derived the equivalent human plasma concentrations. Results indicate that for the 1R6F cigarette, inhaling 1/6th of a stick would be required to induce the same effects observed in vitro, in vivo. Whereas, for HTP it would be necessary to consume 3 sticks simultaneously to induce in vivo the effects observed in vitro. This data further demonstrates the reduced physiological potency potential of HTP aerosol compared to cigarette smoke. The QIVIVE approach demonstrates great promise in assisting human health risk assessments, however, further optimization and standardization are required for the substantiation of a meaningful contribution to tobacco harm reduction by alternative nicotine delivery products.

2.
Toxicology ; 500: 153684, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38029956

RESUMO

in vitro screening platforms to assess teratogenic potential of compounds are emerging rapidly. ReproTracker is a human induced pluripotent stem cells (hiPSCs)-based biomarker assay that is shown to identify the teratogenicity potential of new pharmaceuticals and chemicals reliably. In its current state, the assay is limited to identifying the potential teratogenic effects and does not immediately quantify a clinical dose relevant to the exposure of chemicals or drugs observable in mothers or fetuses. The goal of this study was to evaluate whether the ReproTracker assay can be extrapolated in vivo and quantitatively predict developmental toxicity exposure levels of two known human teratogens, thalidomide, and carbamazepine. Here, we utilized Physiologically Based Pharmacokinetic (PBPK) modeling to describe the pharmacokinetic behavior of these compounds and conducted an in vitro to in vivo extrapolation (IVIVE) approach to predict human equivalent effect doses (HEDs) that correspond with in vitro concentrations potentially associated with adverse outcomes in ReproTracker. The HEDs derived from the ReproTracker concentration predicted to cause developmental toxicity were close to the reported teratogenic human clinical doses and the HED derived from the rat or rabbit developmental toxicity study. The ReproTracker derived-HED revealed to be sensitive and protective of humans. Overall, this pilot study demonstrated the importance of integrating PBPK model in extrapolating and assessing developmental toxicity in vitro. The combination of these tools demonstrated that they could improve the safety assessment of drugs and chemicals without animal testing.


Assuntos
Células-Tronco Pluripotentes Induzidas , Modelos Biológicos , Humanos , Ratos , Animais , Coelhos , Projetos Piloto , Teratogênicos/toxicidade
3.
Toxicol Appl Pharmacol ; 479: 116733, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37866708

RESUMO

Despite the number of in vitro assays that have been recently developed to identify chemicals that interfere with the hypothalamic-pituitary-thyroid axis (HPT), the translation of those in vitro results into in vivo responses (in vitro to in vivo extrapolation, IVIVE) has received limited attention from the modeling community. To help advance this field a steady state biologically based dose response (BBDR) model for the HPT axis was constructed for the pregnant rat on gestation day (GD) 20. The BBDR HPT axis model predicts plasma levels of thyroid stimulating hormone (TSH) and the thyroid hormones, thyroxine (T4) and triiodothyronine (T3). Thyroid hormones are important for normal growth and development of the fetus. Perchlorate, a potent inhibitor of thyroidal uptake of iodide by the sodium iodide symporter (NIS) protein, was used as a case study for the BBDR HPT axis model. The inhibitory blocking of the NIS by perchlorate was associated with dose-dependent steady state decreases in thyroid hormone production in the thyroid gland. The BBDR HPT axis model predictions for TSH, T3, and T4 plasma concentrations in pregnant Sprague Dawley (SD) rats were within 2-fold of observations for drinking water perchlorate exposures ranging from 10 to 30,000 µg/kg/d. In Long Evans (LE) pregnant rats, for both control and perchlorate drinking water exposures, ranging from 85 to 82,000 µg/kg/d, plasma thyroid hormone and TSH concentrations were predicted within 2 to 3.4- fold of observations. This BBDR HPT axis model provides a successful IVIVE template for thyroid hormone disruption in pregnant rats.


Assuntos
Água Potável , Percloratos , Gravidez , Feminino , Ratos , Animais , Percloratos/toxicidade , Ratos Sprague-Dawley , Ratos Long-Evans , Hormônios Tireóideos , Tiroxina/metabolismo , Tireotropina
4.
Toxicology ; 499: 153642, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37863466

RESUMO

New Approach Methodologies (NAMs) are being widely used to reduce, refine, and replace, animal use in studying toxicology. For respiratory toxicology, this includes both in silico and in vitro alternatives to replace traditional in vivo inhalation studies. 1,3-Dichloropropene (1,3-DCP) is a volatile organic compound that is widely used in agriculture as a pre-planting fumigant. Short-term exposure of humans to 1,3-DCP can result in mucous membrane irritation, chest pain, headache, and dizziness. In our previous work, we exposed differentiated cells representing different parts of the respiratory epithelium to 1,3-DCP vapor, measured cytotoxicity, and did In Vitro to In Vivo Extrapolation (IVIVE). We have extended our previous study with 1,3-DCP vapors by conducting transcriptomics on acutely exposed nasal cultures and have implemented a separate 5-day repeated exposure with multiple endpoints to gain further molecular insight into our model. MucilAir™ Nasal cell culture models, representing the nasal epithelium, were exposed to six sub-cytotoxic concentrations of 1,3-DCP vapor at the air-liquid interface, and the nasal cultures were analyzed by different methodologies, including histology, transcriptomics, and glutathione (GSH) -depletion assays. We observed the dose-dependent effect of 1,3-DCP in terms of differential gene expression, change in cellular morphology from pseudostratified columnar epithelium to squamous epithelium, and depletion of GSH in MucilAir™ nasal cultures. The MucilAir™ nasal cultures were also exposed to 3 concentrations of 1,3-DCP using repeated exposure 4 h per day for 5 days and the histological analyses indicated changes in cellular morphology and a decrease in ciliated bodies and an increase in apoptotic bodies, with increasing concentrations of 1,3-DCP. Altogether, our results suggest that sub-cytotoxic exposures to 1,3-DCP lead to several molecular and cellular perturbations, providing significant insight into the mode-of-action (MoA) of 1,3-DCP using an innovative NAM model.


Assuntos
Compostos Alílicos , Hidrocarbonetos Clorados , Praguicidas , Humanos , Animais , Determinação de Ponto Final , Administração por Inalação , Compostos Alílicos/toxicidade , Compostos Alílicos/metabolismo , Hidrocarbonetos Clorados/toxicidade , Exposição por Inalação/efeitos adversos
5.
Toxicology ; 481: 153340, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36183849

RESUMO

Time, cost, ethical, and regulatory considerations surrounding in vivo testing methods render them insufficient to meet existing and future chemical safety testing demands. There is a need for the development of in vitro and in silico alternatives to replace traditional in vivo methods for inhalation toxicity assessment. Exposures of differentiated airway epithelial cultures to gases or aerosols at the air-liquid interface (ALI) can assess tissue responses and in vitro to in vivo extrapolation can align in vitro exposure levels with in-life exposures expected to give similar tissue exposures. Because the airway epithelium varies along its length, with various regions composed of different cell types, we have introduced a known toxic vapor to five human-derived, differentiated, in vitro airway epithelial cell culture models-MucilAir of nasal, tracheal, or bronchial origin, SmallAir, and EpiAlveolar-representing five regions of the airway epithelium-nasal, tracheal, bronchial, bronchiolar, and alveolar. We have monitored toxicity in these cultures 24 h after acute exposure using an assay for transepithelial conductance (for epithelial barrier integrity) and the lactate dehydrogenase (LDH) release assay (for cytotoxicity). Our vapor of choice in these experiments was 1,3-dichloropropene (1,3-DCP). Finally, we have developed an airway dosimetry model for 1,3-DCP vapor to predict in vivo external exposure scenarios that would produce toxic local tissue concentrations as determined by in vitro experiments. Measured in vitro points of departure (PoDs) for all tested cell culture models were similar. Calculated rat equivalent inhaled concentrations varied by model according to position of the modeled tissue within the airway, with nasal respiratory tissue being the most proximal and most sensitive tissue, and alveolar epithelium being the most distal and least sensitive tissue. These predictions are qualitatively in accordance with empirically determined in vivo PoDs. The predicted PoD concentrations were close to, but slightly higher than, PoDs determined by in vivo subchronic studies.


Assuntos
Pulmão , Mucosa Respiratória , Ratos , Humanos , Animais , Mucosa Respiratória/metabolismo , Administração por Inalação , Aerossóis/metabolismo
6.
Front Toxicol ; 4: 894569, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573278

RESUMO

High-throughput (HT) in vitro to in vivo extrapolation (IVIVE) is an integral component in new approach method (NAM)-based risk assessment paradigms, for rapidly translating in vitro toxicity assay results into the context of in vivo exposure. When coupled with rapid exposure predictions, HT-IVIVE supports the use of HT in vitro assays for risk-based chemical prioritization. However, the reliability of prioritization based on HT bioactivity data and HT-IVIVE can be limited as the domain of applicability of current HT-IVIVE is generally restricted to intrinsic clearance measured primarily in pharmaceutical compounds. Further, current approaches only consider parent chemical toxicity. These limitations occur because current state-of-the-art HT prediction tools for clearance and metabolite kinetics do not provide reliable data to support HT-IVIVE. This paper discusses current challenges in implementation of IVIVE for prioritization and risk assessment and recommends a path forward for addressing the most pressing needs and expanding the utility of IVIVE.

7.
Toxicol In Vitro ; 80: 105311, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35038564

RESUMO

There is increasing interest in using modern 'omics technologies, such as whole transcriptome sequencing, to inform decisions about human health safety and chemical toxicity hazard. High throughput methodologies using in vitro assays offer a path forward in reducing or eliminating animal testing. However, many aspects of these technologies need assessment before they will gain the trust of regulators and the public as viable alternative test methods for human health and safety. We used a high throughput whole transcriptome sequence assay (TempO-Seq) to assess the use of three widely used cancer cell lines (HepG2, MCF7, and Ishikawa cells) as in vitro systems for determination of cellular modes of action for two well studied compounds with canonical liver responses: ketoconazole and phenobarbital. We evaluated transcriptomic data to infer points of departure for use in risk analyses of compounds. Both compounds displayed shortcomings in evidence for canonical liver-related responses in any cell line, despite a strong dose response in all three. This raises questions about the competence of simple, mono-cultured cancer cell lines as appropriate surrogates for some adverse effects or toxic endpoints. Points of departure derived from benchmark doses were highly consistent across all three cell lines however, indicating the use of transcriptomic BMD analyses for such purposes would be a reliable and consistent approach.


Assuntos
Medição de Risco/métodos , Toxicogenética , Linhagem Celular Tumoral , Expressão Gênica/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Cetoconazol/farmacologia , Fenobarbital/farmacologia , RNA-Seq
8.
Xenobiotica ; 51(1): 40-50, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32757971

RESUMO

The kinetics of metabolism of deltamethrin (DLM) and cis- and trans-permethrin (CPM and TPM) was studied in male Sprague-Dawley rat and human liver microsomes. DLM metabolism kinetics was also studied in isolated rat hepatocytes, liver microsomes and cytosol. Apparent intrinsic clearance (CLint) values for the metabolism of DLM, CPM and TPM by cytochrome P450 (CYP) and carboxylesterase (CES) enzymes in rat and human liver microsomes decreased with increasing microsomal protein concentration. However, when apparent CLint values were corrected for nonspecific binding to allow calculation of unbound (i.e., corrected) CLint values, the unbound values did not vary greatly with microsomal protein concentration. Unbound CLint values for metabolism of 0.05-1 µM DLM in rat liver microsomes (CYP and CES enzymes) and cytosol (CES enzymes) were not significantly different from rates of DLM metabolism in isolated rat hepatocytes. This study demonstrates that the nonspecific binding of these highly lipophilic compounds needs to be taken into account in order to obtain accurate estimates of rates of in vitro metabolism of these pyrethroids. While DLM is rapidly metabolised in vitro, the hepatocyte membrane does not appear to represent a barrier to the absorption and hence subsequent hepatic metabolism of this pyrethroid.


Assuntos
Citosol/metabolismo , Fígado/metabolismo , Permetrina/metabolismo , Animais , Carboxilesterase/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Hepatócitos/metabolismo , Humanos , Cinética , Masculino , Microssomos Hepáticos/metabolismo , Nitrilas/metabolismo , Piretrinas/metabolismo , Ratos , Ratos Sprague-Dawley
9.
Toxicology ; 443: 152563, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32805335

RESUMO

The objective of this study was to obtain data on pathways of absorption of the synthetic pyrethroids deltamethrin (DLM) and cis-permethrin (CPM) following oral administration to rats. Adult male Sprague-Dawley rats with cannulated mesenteric lymph ducts and hepatic portal veins were given single doses of either 5 mg/kg DLM or 60 mg/kg CPM via the duodenum and lymph and portal blood samples collected for up to 300 min. The pyrethroid dosing vehicles (5 mL/kg body weight) were either corn oil or glycerol formal. Levels of DLM and CPM in lymph and portal blood samples were determined by high-performance liquid chromatography-mass spectrometry-mass spectrometry. Over the time period studied, levels of both DLM and CPM following administration in either corn oil or glycerol formal were greater in lymph than in portal blood. Lymphatic uptake of both DLM and CPM was enhanced following dosing in glycerol formal than in corn oil. The results of this study suggest that after oral administration to rats, these two pyrethroids are predominantly absorbed via the lymphatic system rather than via portal blood. The data obtained in this study thus support a recently developed physiologically-based pharmacokinetic (PBPK) model to evaluate age-related differences in pyrethroid pharmacokinetics in the rat, where it was assumed that absorption of pyrethroids was predominantly via lymphatic uptake.


Assuntos
Inseticidas/farmacocinética , Linfa/metabolismo , Nitrilas/farmacocinética , Permetrina/farmacocinética , Veia Porta/metabolismo , Piretrinas/farmacocinética , Administração Oral , Animais , Transporte Biológico , Inseticidas/sangue , Masculino , Nitrilas/sangue , Permetrina/sangue , Piretrinas/sangue , Ratos Sprague-Dawley
10.
Xenobiotica ; 50(12): 1434-1442, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32672501

RESUMO

The metabolism of bifenthrin (BIF), ß-cyfluthrin (CYFL), λ-cyhalothrin (CYHA), cyphenothrin (CYPH) and esfenvalerate (ESF) was studied in liver microsomes, liver cytosol and plasma from male Sprague-Dawley rats aged 90, 21 and 15 days and from adult humans. Pyrethroid metabolism was also studied with some human expressed cytochrome P450 (CYP) and carboxylesterase (CES) enzymes. All five pyrethroids were metabolised by adult (90 day old) rat hepatic microsomal CYP and CES enzymes and by cytosolic CES enzymes. The pyrethroids were also metabolised by human liver microsomes and cytosol. Some species differences were observed. Pyrethroid metabolism by cytosolic CES enzymes contributes to the overall hepatic clearance of these compounds. CYFL, CYHA, CYPH and ESF were metabolised by rat plasma CES enzymes, whereas none of the pyrethroids were metabolised by human plasma. This study demonstrates that the ability of male rats to metabolise these pyrethroids by hepatic CYP and CES enzymes and plasma CES enzymes increases with age. In all instances, apparent intrinsic clearance values were lower in 15 than in 90 day old rats. All pyrethroids were metabolised by some of the human expressed CYP enzymes studied and apart from BIF were also metabolised by CES enzymes.


Assuntos
Carboxilesterase/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Piretrinas/metabolismo , Animais , Humanos , Masculino , Microssomos Hepáticos/metabolismo , Nitrilas/metabolismo , Ratos
11.
Toxicol Sci ; 176(2): 460-469, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32421774

RESUMO

The assessment of potentially sensitive populations is an important application of risk assessment. To address the concern for age-related sensitivity to pyrethroid insecticides, life-stage physiologically based pharmacokinetic (PBPK) modeling supported by in vitro to in vivo extrapolation was conducted to predict age-dependent changes in target tissue exposure to 8 pyrethroids. The purpose of this age-dependent dosimetry was to calculate a Data-derived Extrapolation Factor (DDEF) to address age-related pharmacokinetic differences for pyrethroids in humans. We developed a generic human PBPK model for pyrethroids based on our previously published rat model that was developed with in vivo rat data. The results demonstrated that the age-related differences in internal exposure to pyrethroids in the brain are largely determined by the differences in metabolic capacity and in physiology for pyrethroids between children and adults. The most important conclusion from our research is that, given an identical external exposure, the internal (target tissue) concentration is equal or lower in children than in adults in response to the same level of exposure to a pyrethroid. Our results show that, based on the use of the life-stage PBPK models with 8 pyrethroids, DDEF values are essentially close to 1, resulting in a DDEF for age-related pharmacokinetic differences of 1. For risk assessment purposes, this indicates that no additional adjustment factor is necessary to account for age-related pharmacokinetic differences for these pyrethroids.


Assuntos
Fatores Etários , Piretrinas , Medição de Risco , Animais , Humanos , Modelos Biológicos , Piretrinas/farmacocinética , Ratos
12.
Toxicol Sci ; 173(1): 86-99, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31593217

RESUMO

To address concerns around age-related sensitivity to pyrethroids, a life-stage physiologically based pharmacokinetic (PBPK) model, supported by in vitro to in vivo extrapolation (IVIVE) was developed. The model was used to predict age-dependent changes in target tissue exposure of 8 pyrethroids; deltamethrin (DLM), cis-permethrin (CPM), trans-permethrin, esfenvalerate, cyphenothrin, cyhalothrin, cyfluthrin, and bifenthrin. A single model structure was used based on previous work in the rat. Intrinsic clearance (CLint) of each individual cytochrome P450 or carboxylesterase (CES) enzyme that are active for a given pyrethroid were measured in vitro, then biologically scaled to obtain in vivo age-specific total hepatic CLint. These IVIVE results indicate that, except for bifenthrin, CES enzymes are largely responsible for human hepatic metabolism (>50% contribution). Given the high efficiency and rapid maturation of CESs, clearance of the pyrethroids is very efficient across ages, leading to a blood flow-limited metabolism. Together with age-specific physiological parameters, in particular liver blood flow, the efficient metabolic clearance of pyrethroids across ages results in comparable to or even lower internal exposure in the target tissue (brain) in children than that in adults in response to the same level of exposure to a given pyrethroid (Cmax ratio in brain between 1- and 25-year old = 0.69, 0.93, and 0.94 for DLM, bifenthrin, and CPM, respectively). Our study demonstrated that a life-stage PBPK modeling approach, coupled with IVIVE, provides a robust framework for evaluating age-related differences in pharmacokinetics and internal target tissue exposure in humans for the pyrethroid class of chemicals.


Assuntos
Modelos Biológicos , Piretrinas/farmacocinética , Carboxilesterase/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Relação Dose-Resposta a Droga , Humanos , Cinética , Fígado , Microssomos Hepáticos/enzimologia , Nitrilas , Permetrina , Farmacocinética
13.
Toxicol Appl Pharmacol ; 387: 114774, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31783037

RESUMO

Chemical risk assessment relies on toxicity tests that require significant numbers of animals, time and costs. For the >30,000 chemicals in commerce, the current scale of animal testing is insufficient to address chemical safety concerns as regulatory and product stewardship considerations evolve to require more comprehensive understanding of potential biological effects, conditions of use, and associated exposures. We demonstrate the use of a multi-level new approach methodology (NAMs) strategy for hazard- and risk-based prioritization to reduce animal testing. A Level 1/2 chemical prioritization based on estrogen receptor (ER) activity and metabolic activation using ToxCast data was used to select 112 chemicals for testing in a Level 3 human uterine cell estrogen response assay (IKA assay). The Level 3 data were coupled with quantitative in vitro to in vivo extrapolation (Q-IVIVE) to support bioactivity determination (as a surrogate for hazard) in a tissue-specific context. Assay AC50s and Q-IVIVE were used to estimate human equivalent doses (HEDs), and HEDs were compared to rodent uterotrophic assay in vivo-derived points of departure (PODs). For substances active both in vitro and in vivo, IKA assay-derived HEDs were lower or equivalent to in vivo PODs for 19/23 compounds (83%). Activity exposure relationships were calculated, and the IKA assay was as or more protective of human health than the rodent uterotrophic assay for all IKA-positive compounds. This study demonstrates the utility of biologically relevant fit-for-purpose assays and supports the use of a multi-level strategy for chemical risk assessment.


Assuntos
Alternativas ao Uso de Animais/métodos , Disruptores Endócrinos/toxicidade , Ensaios de Triagem em Larga Escala/métodos , Testes de Toxicidade/métodos , Útero/efeitos dos fármacos , Animais , Bioensaio/métodos , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Simulação por Computador , Estudos de Viabilidade , Feminino , Humanos , Modelos Biológicos , Ratos , Medição de Risco/métodos , Útero/citologia
14.
Environ Res ; 182: 109017, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31865168

RESUMO

Exposure to perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) has been associated with the occurrence of thyroid disease in some epidemiologic studies. We hypothesized that in a specific epidemiologic study based on the National Health and Nutrition Examination Survey, the association of subclinical thyroid disease with serum concentration of PFOA and PFOS was due to reverse causality. Thyroid hormone affects glomerular filtration, which in turn affects excretion of PFOA and PFOS. We evaluated this by linking a model of thyroid disease status over the lifetime to physiologically based pharmacokinetic models of PFOA and PFOS. Using Monte Carlo methods, we simulated the target study population and analyzed the data using multivariable logistic regression. The target and simulated populations were similar with respect to age, estimated glomerular filtration rate, serum concentrations of PFOA and PFOS, and prevalence of subclinical thyroid disease. Our findings suggest that in the target study the associations with subclinical hypothyroidism were overstated and the results for subclinical hyperthyroidism were, in general, understated. For example, for subclinical hypothyroidism in men, the reported odds ratio per ln(PFOS) increase was 1.98 (95% CI 1.19-3.28), whereas in the simulated data the bias due to reverse causality gave an odds ratio of 1.19 (1.16-1.23). Our results provide evidence of bias due to reverse causality in a specific cross-sectional study of subclinical thyroid disease with exposure to PFOA and PFOS among adults.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Doenças da Glândula Tireoide , Adulto , Caprilatos , Estudos Transversais , Poluentes Ambientais/sangue , Poluentes Ambientais/toxicidade , Feminino , Fluorocarbonos/sangue , Fluorocarbonos/toxicidade , Humanos , Masculino , Inquéritos Nutricionais , Doenças da Glândula Tireoide/induzido quimicamente
15.
ALTEX ; 36(4): 523-534, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31664457

RESUMO

In the past 10 years, the public, private, and non-profit sectors have found agreement that hazard identification and risk assessment should capitalize on the explosion of knowledge in the biological sciences, moving away from in life animal testing toward more human-relevant in vitro and in silico methods, collectively referred to as new approach methodologies (NAMs). The goals for implementation of NAMs are to efficiently identify possible chemical hazards and to gather dose-response data to inform more human-relevant safety assessment. While work proceeds to develop NAMs, there has been less emphasis on creating decision criteria or showing how risk context should guide selection and use of NAMs. Here, we outline application scenarios for NAMs in different risk contexts and place different NAMs and conventional testing approaches into four broad levels. Level 1 relies solely on computational screening; Level 2 consists of high throughput in vitro screening with human cells intended to provide broad coverage of possible responses; Level 3 focuses on fit-for-purpose assays selected based on presumptive modes of action (MOA) and designed to provide more quantitative estimates of relevant dose responses; Level 4 has a variety of more complex multi-dimensional or multi-cellular assays and might include targeted in vivo studies to further define MOA. Each level also includes decision-appropriate exposure assessment tools. Our aims here are to (1) foster discussion about context-dependent applications of NAMs in relation to risk assessment needs and (2) describe a functional roadmap to identify where NAMs are expected to be adequate for chemical safety decision-making.


Assuntos
Alternativas aos Testes com Animais/tendências , Testes de Toxicidade/tendências , Animais , Biologia Computacional/métodos , Química Computacional/métodos , Ensaios de Triagem em Larga Escala , Humanos , Técnicas In Vitro , Mamíferos
16.
Food Chem Toxicol ; 133: 110785, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31449896

RESUMO

Hexabromocyclododecane (HBCD) is a flame retardant largely found in textiles, electrical equipment and building materials. The potential exposure associated with adverse effects described in animals make HBCD a substance of interest. To better characterize the risk in humans, it is important to understand the dose-response relationship using available data concerning the exposure and toxicity of environmental contaminants such as HBCD. For this reason, a physiologically-based pharmacokinetic (PBPK) model was developed to describe the disposition of α-HBCD after a single oral administration. The results showed that the model can appropriately predict blood and tissue concentration in rodents. The model described that lipoproteins play a key role in the distribution of α-HBCD in the body even though its lipophilic nature would suggest preferential storage in adipose tissue. The model was also adapted to humans to predict plasma exposure to α-HBCD and showed reasonable estimates when compared against estimated diet levels and biomonitoring measures. As part of a larger study on integrating new toxicity data for human health risk assessment, the present PBPK model will serve as a supporting tool to help extrapolate and interpret in vitro and in vivo kinetics of flame retardants such as HBCD.


Assuntos
Retardadores de Chama/farmacocinética , Hidrocarbonetos Bromados/farmacocinética , Modelos Biológicos , Animais , Retardadores de Chama/toxicidade , Humanos , Hidrocarbonetos Bromados/toxicidade , Ratos , Toxicocinética
17.
Food Chem Toxicol ; 131: 110581, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31202941

RESUMO

Current global efforts are aiming to increase use of mechanistic information in regulatory testing. In tiered testing paradigms, in vitro, in silico, and in vivo studies are employed progressively to identify and classify health hazards, which are then compared against human equivalent doses. We used data from three companion papers on the brominated flame retardant hexabromocyclododecane (HBCD) to conduct a case study on tiered testing. We included ToxCast™ and in vitro-in vivo extrapolation (Tier 1), rat liver transcriptomic (Tier 2), and conventional rat (Tier 3) data. Bioactivity-exposure ratios (BERs) were derived by comparing human administered dose equivalents of the measured effects to Canadian exposure levels. Biological perturbations were highly aligned between Tiers 1/2, and consistent with apical effects in Tier 3. Tier 1 had the smallest BERs, and Tiers 2/3 were similar. The study demonstrates the promise of using physiologically-based pharmacokinetic modeling and mechanistic analyses in a tiered framework to identify pathways through which chemicals exert toxicological effects; however, they also point to some shortcomings associated with in vitro and in silico approaches. Additional case studies of chemicals from multiple classes are required to define optimal tiered screening procedures to reduce future in vivo requirements in health hazard assessments.


Assuntos
Retardadores de Chama/toxicidade , Hidrocarbonetos Bromados/toxicidade , Animais , Apoptose/efeitos dos fármacos , Feminino , Retardadores de Chama/administração & dosagem , Expressão Gênica/efeitos dos fármacos , Humanos , Hidrocarbonetos Bromados/administração & dosagem , Masculino , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Ratos Wistar , Medição de Risco , Testes de Toxicidade/métodos
18.
Toxicol Sci ; 169(2): 365-379, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30768128

RESUMO

An in vitro to in vivo (IVIVE) extrapolation based-physiologically based pharmacokinetic (PBPK) modeling approach was demonstrated to understand age-related differences in kinetics and how they potentially affect age-related differences in acute neurotoxic effects of pyrethroids. To describe the age-dependent changes in pyrethroid kinetics, it was critical to incorporate age-dependent changes in metabolism into the model. As such, in vitro metabolism data were collected for 3 selected pyrethroids, deltamethrin (DLM), cis-permethrin, and trans-permethrin, using liver microsomes and cytosol, and plasma prepared from immature and adult rats. Resulting metabolism parameters, maximum rate of metabolism (Vmax) and Michaelis-Menten constant (Km), were biologically scaled to respective in vivo parameters for use in the age-specific PBPK model. Then, age-dependent changes in target tissue exposure, i.e., brain Cmax, to a given pyrethroid were simulated across ages using the model. The PBPK model recapitulated in vivo time-course plasma and brain concentrations of the 3 pyrethroids in immature and adult rats following oral administration of both low and high doses of these compounds. A single model structure developed for DLM was able to describe the kinetics of the other 2 pyrethroids when used with compound- and age-specific metabolism parameters, suggesting that one generic model for pyrethroids as a group can be used for early age-sensitivity evaluation if appropriate metabolic parameters are used. This study demonstrated the validity of applying IVIVE-based PBPK modeling to development of age-specific PBPK models for pyrethroids in support of pyrethroid risk assessment of potentially sensitive early age populations in humans.


Assuntos
Inseticidas/farmacocinética , Piretrinas/farmacocinética , Fatores Etários , Animais , Inativação Metabólica , Absorção Intestinal , Masculino , Modelos Biológicos , Permeabilidade , Ratos , Ratos Sprague-Dawley
19.
Xenobiotica ; 49(5): 521-527, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-29779438

RESUMO

The metabolism of the pyrethroids deltamethrin (DLM), cis-permethrin (CPM) and trans-permethrin (TPM) was studied in human expressed cytochrome P450 (CYP) and carboxylesterase (CES) enzymes. DLM, CPM and TPM were metabolised by human CYP2B6 and CYP2C19, with the highest apparent intrinsic clearance (CLint) values for pyrethroid metabolism being observed with CYP2C19. Other CYP enzymes contributing to the metabolism of one or more of the three pyrethroids were CYP1A2, CYP2C8, CYP2C9*1, CYP2D6*1, CYP3A4 and CYP3A5. None of the pyrethroids were metabolised by CYP2A6, CYP2E1, CYP3A7 or CYP4A11. DLM, CPM and TPM were metabolised by both human CES1 and CES2 enzymes. Apparent CLint values for pyrethroid metabolism by CYP and CES enzymes were scaled to per gram of adult human liver using abundance values for microsomal CYP enzymes and for CES enzymes in liver microsomes and cytosol. TPM had the highest and CPM the lowest apparent CLint values for total metabolism (CYP and CES enzymes) per gram of adult human liver. Due to their higher abundance, all three pyrethroids were extensively metabolised by CES enzymes in adult human liver, with CYP enzymes only accounting for 2%, 10% and 1% of total metabolism for DLM, CPM and TPM, respectively.


Assuntos
Carboxilesterase/química , Sistema Enzimático do Citocromo P-450/química , Nitrilas/química , Permetrina/química , Piretrinas/química , Carboxilesterase/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Nitrilas/farmacocinética , Permetrina/farmacocinética , Piretrinas/farmacocinética , Estereoisomerismo
20.
J Toxicol Environ Health A ; 81(20): 1066-1082, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30365389

RESUMO

Biomonitoring might provide useful estimates of population exposure to environmental chemicals. However, data uncertainties stemming from interindividual variability are common in large population biomonitoring surveys. Physiologically based pharmacokinetic (PBPK) models might be used to account for age- and gender-related variability in internal dose. The objective of this study was to reconstruct air concentrations consistent with blood toluene measures reported in the third Canadian Health Measures Survey using reverse dosimetry PBPK modeling techniques. Population distributions of model's physiological parameters were described based upon age, weight, and size for four subpopulations (12-19, 20-39, 40-59, and 60-79 years old). Monte Carlo simulations applied to PBPK modeling allowed converting the distributions of venous blood measures of toluene obtained from CHMS into related air levels. Based upon blood levels observed at the 50th, 90th and 95th percentiles, corresponding air toluene concentrations were estimated for teenagers aged 12-19 years as being, respectively, 0.009, 0.04 and 0.06 ppm. Similarly, values were computed for adults aged 20-39 years (0.007, 0.036, and 0.06 ppm), 40-59 years (0.007, 0.036 and 0.06 ppm) and 60-79 years (0.006, 0.022 and 0.04 ppm). These estimations are well below Health Canada's maximum recommended chronic air guidelines for toluene. In conclusion, PBPK modeling and reverse dosimetry may be combined to help interpret biomonitoring data for chemical exposure in large population surveys and estimate the associated toxicological health risk.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Ambientais/farmacocinética , Tolueno/farmacocinética , Adolescente , Adulto , Idoso , Canadá , Inquéritos Epidemiológicos , Humanos , Pessoa de Meia-Idade , Modelos Biológicos , Método de Monte Carlo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...