Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Mol Ther Methods Clin Dev ; 32(2): 101253, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38764780

RESUMO

CRISPR-Cas9 and novel cas fusion proteins leveraging specific DNA targeting ability combined with deaminases or reverse transcriptases have revolutionized genome editing. However, their efficacy heavily relies upon protein variants, targeting single guide RNAs, and surrounding DNA sequence context within the targeted loci. This necessitates the need for efficient and rapid screening methods to evaluate these editing reagents and designs. Existing plasmid-based reporters lack flexibility, being fixed to specific DNA sequences, hindering direct comparisons between various editing approaches. To address this, we developed the versatile genome editing application reporter (V-GEAR) system. V-GEAR comprises genes detectable after desired editing via base editing, prime editing, or homology-directed repair within relevant genomic contexts. It employs a detectable synthetic cell surface protein (RQR8) followed by a customizable target sequence resembling genomic regions of interest. These genes allow for reliable identification of corrective editing and cell enrichment. We validated the V-GEAR system with base editors, prime editors, and Cas9-mediated homology-directed repair. Furthermore, the V-GEAR system offers versatility by allowing transient screening or stable integration at the AAVS1 safe harbor loci, rapidly achieved through immunomagnetic isolation. This innovative system enables direct comparisons among editing technologies, accelerating the development and testing of genome editing approaches.

2.
bioRxiv ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38712248

RESUMO

Enzymopathy disorders are the result of missing or defective enzymes. Amongst these enzymopathies, mucopolysaccharidosis type I, is a rare genetic lysosomal storage disorder caused by mutations in the gene encoding alpha-L-iduronidase (IDUA), ultimately causes toxic build-up of glycosaminoglycans (GAGs). There is currently no cure and standard treatments provide insufficient relief to the skeletal structure and central nervous system (CNS). Human memory T cells (Tm) migrate throughout the body's tissues and can persist for years, making them an attractive approach for cellular-based, systemic enzyme replacement therapy. Here, we tested genetically engineered, IDUA-expressing Tm as a cellular therapy in an immunodeficient mouse model of MPS I. Our results demonstrate that a single dose of engineered Tm leads to detectable IDUA enzyme levels in the blood for up to 22 weeks and reduced urinary GAG excretion. Furthermore, engineered Tm take up residence in nearly all tested tissues, producing IDUA and leading to metabolic correction of GAG levels in the heart, lung, liver, spleen, kidney, bone marrow, and the CNS. Our study indicates that genetically engineered Tm holds great promise as a platform for cellular-based enzyme replacement therapy for the treatment of mucopolysaccharidosis type I and potentially many other enzymopathies and protein deficiencies.

3.
Mol Ther ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627969

RESUMO

Cellular therapies for the treatment of human diseases, such as chimeric antigen receptor (CAR) T and natural killer (NK) cells have shown remarkable clinical efficacy in treating hematological malignancies; however, current methods mainly utilize viral vectors that are limited by their cargo size capacities, high cost, and long timelines for production of clinical reagent. Delivery of genetic cargo via DNA transposon engineering is a more timely and cost-effective approach, yet has been held back by less efficient integration rates. Here, we report the development of a novel hyperactive TcBuster (TcB-M) transposase engineered through structure-guided and in vitro evolution approaches that achieves high-efficiency integration of large, multicistronic CAR-expression cassettes in primary human cells. Our proof-of-principle TcB-M engineering of CAR-NK and CAR-T cells shows low integrated vector copy number, a safe insertion site profile, robust in vitro function, and improves survival in a Burkitt lymphoma xenograft model in vivo. Overall, TcB-M is a versatile, safe, efficient and open-source option for the rapid manufacture and preclinical testing of primary human immune cell therapies through delivery of multicistronic large cargo via transposition.

4.
bioRxiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38496503

RESUMO

Natural killer (NK) cells' unique ability to kill transformed cells expressing stress ligands or lacking major histocompatibility complexes (MHC) has prompted their development for immunotherapy. However, NK cells have demonstrated only moderate responses against cancer in clinical trials and likely require advanced genome engineering to reach their full potential as a cancer therapeutic. Multiplex genome editing with CRISPR/Cas9 base editors (BE) has been used to enhance T cell function and has already entered clinical trials but has not been reported in human NK cells. Here, we report the first application of BE in primary NK cells to achieve both loss-of-function and gain-of-function mutations. We observed highly efficient single and multiplex base editing, resulting in significantly enhanced NK cell function. Next, we combined multiplex BE with non-viral TcBuster transposon-based integration to generate IL-15 armored CD19 CAR-NK cells with significantly improved functionality in a highly suppressive model of Burkitt's lymphoma both in vitro and in vivo. The use of concomitant non-viral transposon engineering with multiplex base editing thus represents a highly versatile and efficient platform to generate CAR-NK products for cell-based immunotherapy and affords the flexibility to tailor multiple gene edits to maximize the effectiveness of the therapy for the cancer type being treated.

5.
Nat Biomed Eng ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092857

RESUMO

The reliance on viral vectors for the production of genetically engineered immune cells for adoptive cellular therapies remains a translational bottleneck. Here we report a method leveraging the DNA repair pathway homology-mediated end joining, as well as optimized reagent composition and delivery, for the Cas9-induced targeted integration of large DNA payloads into primary human T cells with low toxicity and at efficiencies nearing those of viral vectors (targeted knock-in of 1-6.7 kb payloads at rates of up to 70% at multiple targeted genomic loci and with cell viabilities of over 80%). We used the method to produce T cells with an engineered T-cell receptor or a chimaeric antigen receptor and show that the cells maintained low levels of exhaustion markers and excellent capacities for proliferation and cytokine production and that they elicited potent antitumour cytotoxicity in vitro and in mice. The method is readily adaptable to current good manufacturing practices and scale-up processes, and hence may be used as an alternative to viral vectors for the production of genetically engineered T cells for cancer immunotherapies.

6.
Heliyon ; 9(8): e18774, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37576222

RESUMO

Various molecular subclasses of hepatocellular carcinoma (HCC) exists, with many novel cooperating oncogenes and tumor suppressor genes involved in its tumorigenesis. The emerging importance of WNT signaling in HCC has been established. However, the intricate genetic mechanisms involved in this complex signaling pathway remains to be elucidated. Importantly, while some cooperating genes have been identified, there are still many unknown genes associated with catenin beta 1 (CTNNB1)-induced HCC. Mutations in both oncogenes and tumor suppressor genes are required for HCC tumorigenesis. The emergence of the CRISPR/Cas9 system has allowed researchers now to target both alleles efficiently. In this novel study, the Sleeping Beauty transposon system was used as a gene delivery system in vivo to stably integrate an expression cassette that carry pools of gRNAs and overexpress a mutant version of CTNNB1 into the hepatocyte genome. We identified 206 candidate genes that drive HCC tumorigenesis in the context of WNT signaling activation and, neurofibromin 2 (NF2) gene, a known tumor suppressor gene with clinical relevance was validated in this proof-of-principle study.

7.
Commun Biol ; 6(1): 582, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264057

RESUMO

Comprehensive screenings to clarify indirect cell-cell interactions, such as those in the tumor microenvironment, especially comprehensive assessments of supporting cells' effects, are challenging. Therefore, in this study, indirect CRISPR screening for drug resistance with cell-cell interactions was invented. The photoconvertible fluorescent protein Dendra2 was inducted to supporting cells and explored the drug resistance responsible factors of supporting cells with CRISPR screenings. Random mutated supporting cells co-cultured with leukemic cells induced drug resistance with cell-cell interactions. Supporting cells responsible for drug resistance were isolated with green-to-red photoconversion, and 39 candidate genes were identified. Knocking out C9orf89, MAGI2, MLPH, or RHBDD2 in supporting cells reduced the ratio of apoptosis of cancer cells. In addition, the low expression of RHBDD2 in supporting cells, specifically fibroblasts, of clinical pancreatic cancer showed a shortened prognosis, and a negative correlation with CXCL12 was observed. Indirect CRISPR screening was established to isolate the responsible elements of cell-cell interactions. This screening method could reveal unknown mechanisms in all kinds of cell-cell interactions by revealing live phenotype-inducible cells, and it could be a platform for discovering new targets of drugs for conventional chemotherapies.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas , Comunicação Celular/genética , Resistência a Medicamentos
8.
J Immunol ; 210(8): 1108-1122, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36881874

RESUMO

CMV infection alters NK cell phenotype and function toward a more memory-like immune state. These cells, termed adaptive NK cells, typically express CD57 and NKG2C but lack expression of the FcRγ-chain (gene: FCER1G, FcRγ), PLZF, and SYK. Functionally, adaptive NK cells display enhanced Ab-dependent cellular cytotoxicity (ADCC) and cytokine production. However, the mechanism behind this enhanced function is unknown. To understand what drives enhanced ADCC and cytokine production in adaptive NK cells, we optimized a CRISPR/Cas9 system to ablate genes from primary human NK cells. We ablated genes that encode molecules in the ADCC pathway, such as FcRγ, CD3ζ, SYK, SHP-1, ZAP70, and the transcription factor PLZF, and tested subsequent ADCC and cytokine production. We found that ablating the FcRγ-chain caused a modest increase in TNF-α production. Ablation of PLZF did not enhance ADCC or cytokine production. Importantly, SYK kinase ablation significantly enhanced cytotoxicity, cytokine production, and target cell conjugation, whereas ZAP70 kinase ablation diminished function. Ablating the phosphatase SHP-1 enhanced cytotoxicity but reduced cytokine production. These results indicate that the enhanced cytotoxicity and cytokine production of CMV-induced adaptive NK cells is more likely due to the loss of SYK than the lack of FcRγ or PLZF. We found the lack of SYK expression could improve target cell conjugation through enhanced CD2 expression or limit SHP-1-mediated inhibition of CD16A signaling, leading to enhanced cytotoxicity and cytokine production.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Humanos , Quinase Syk/genética , Sistemas CRISPR-Cas , Células Matadoras Naturais , Citocinas , Citotoxicidade Celular Dependente de Anticorpos
9.
Nat Commun ; 14(1): 528, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36726009

RESUMO

T cell receptor (TCR) transgenic mice represent an invaluable tool to study antigen-specific immune responses. In the pre-existing models, a monoclonal TCR is driven by a non-physiologic promoter and randomly integrated into the genome. Here, we create a highly efficient methodology to develop T cell receptor exchange (TRex) mice, in which TCRs, specific to the self/tumor antigen mesothelin (Msln), are integrated into the Trac locus, with concomitant Msln disruption to circumvent T cell tolerance. We show that high affinity TRex thymocytes undergo all sequential stages of maturation, express the exogenous TCR at DN4, require MHC class I for positive selection and undergo negative selection only when both Msln alleles are present. By comparison of TCRs with the same specificity but varying affinity, we show that Trac targeting improves functional sensitivity of a lower affinity TCR and confers resistance to T cell functional loss. By generating P14 TRex mice with the same specificity as the widely used LCMV-P14 TCR transgenic mouse, we demonstrate increased avidity of Trac-targeted TCRs over transgenic TCRs, while preserving physiologic T cell development. Together, our results support that the TRex methodology is an advanced tool to study physiological antigen-specific T cell behavior.


Assuntos
Receptores de Antígenos de Linfócitos T , Timócitos , Camundongos , Animais , Receptores de Antígenos de Linfócitos T/genética , Camundongos Transgênicos , Diferenciação Celular , Autoantígenos
10.
Cytotherapy ; 25(3): 270-276, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36635153

RESUMO

BACKGROUND: Consistent progress has been made to create more efficient and useful CRISPR-Cas9-based molecular toolsfor genomic modification. METHODS: This review focuses on recent articles that have employed base editors (BEs) for both clinical and research purposes. RESULTS: CRISPR-Cas9 BEs are a useful system because of their highefficiency and broad applicability to gene correction and disruption. In addition, base editing has beensuggested as a safer approach than other CRISPR-Cas9-based systems, as it limits double-strand breaksduring multiplex gene knockout and does not require a toxic DNA donor molecule for genetic correction. CONCLUSION: As such, numerous industry and academic groups are currently developing base editing strategies withclinical applications in cancer immunotherapy and gene therapy, which this review will discuss, with a focuson current and future applications of in vivo BE delivery.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Sistemas CRISPR-Cas/genética , Terapia Genética , DNA
11.
Int J Mol Sci ; 23(17)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36077152

RESUMO

Monocytes and their downstream effectors are critical components of the innate immune system. Monocytes are equipped with chemokine receptors, allowing them to migrate to various tissues, where they can differentiate into macrophage and dendritic cell subsets and participate in tissue homeostasis, infection, autoimmune disease, and cancer. Enabling genome engineering in monocytes and their effector cells will facilitate a myriad of applications for basic and translational research. Here, we demonstrate that CRISPR-Cas9 RNPs can be used for efficient gene knockout in primary human monocytes. In addition, we demonstrate that intracellular RNases are likely responsible for poor and heterogenous mRNA expression as incorporation of pan-RNase inhibitor allows efficient genome engineering following mRNA-based delivery of Cas9 and base editor enzymes. Moreover, we demonstrate that CRISPR-Cas9 combined with an rAAV vector DNA donor template mediates site-specific insertion and expression of a transgene in primary human monocytes. Finally, we demonstrate that SIRPa knock-out monocyte-derived macrophages have enhanced activity against cancer cells, highlighting the potential for application in cellular immunotherapies.


Assuntos
Sistemas CRISPR-Cas , Ribonucleases , Sistemas CRISPR-Cas/genética , Endorribonucleases/genética , Edição de Genes , Técnicas de Inativação de Genes , Engenharia Genética , Humanos , Monócitos , RNA Mensageiro/genética , Ribonucleases/genética
12.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955545

RESUMO

Fanconi anemia (FA) is a rare genetic disease in which genes essential for DNA repair are mutated. Both the interstrand crosslink (ICL) and double-strand break (DSB) repair pathways are disrupted in FA, leading to patient bone marrow failure (BMF) and cancer predisposition. The only curative therapy for the hematological manifestations of FA is an allogeneic hematopoietic cell transplant (HCT); however, many (>70%) patients lack a suitable human leukocyte antigen (HLA)-matched donor, often resulting in increased rates of graft-versus-host disease (GvHD) and, potentially, the exacerbation of cancer risk. Successful engraftment of gene-corrected autologous hematopoietic stem cells (HSC) circumvents the need for an allogeneic HCT and has been achieved in other genetic diseases using targeted nucleases to induce site specific DSBs and the correction of mutated genes through homology-directed repair (HDR). However, this process is extremely inefficient in FA cells, as they are inherently deficient in DNA repair. Here, we demonstrate the correction of FANCA mutations in primary patient cells using 'digital' genome editing with the cytosine and adenine base editors (BEs). These Cas9-based tools allow for C:G > T:A or A:T > C:G base transitions without the induction of a toxic DSB or the need for a DNA donor molecule. These genetic corrections or conservative codon substitution strategies lead to phenotypic rescue as illustrated by a resistance to the alkylating crosslinking agent Mitomycin C (MMC). Further, FANCA protein expression was restored, and an intact FA pathway was demonstrated by downstream FANCD2 monoubiquitination induction. This BE digital correction strategy will enable the use of gene-corrected FA patient hematopoietic stem and progenitor cells (HSPCs) for autologous HCT, obviating the risks associated with allogeneic HCT and DSB induction during autologous HSC gene therapy.

13.
Med ; 3(10): 682-704.e8, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36007524

RESUMO

BACKGROUND: Adoptive transfer of tumor-infiltrating lymphocytes (TIL) fails to consistently elicit tumor rejection. Manipulation of intrinsic factors that inhibit T cell effector function and neoantigen recognition may therefore improve TIL therapy outcomes. We previously identified the cytokine-induced SH2 protein (CISH) as a key regulator of T cell functional avidity in mice. Here, we investigate the mechanistic role of CISH in regulating human T cell effector function in solid tumors and demonstrate that CRISPR/Cas9 disruption of CISH enhances TIL neoantigen recognition and response to checkpoint blockade. METHODS: Single-cell gene expression profiling was used to identify a negative correlation between high CISH expression and TIL activation in patient-derived TIL. A GMP-compliant CRISPR/Cas9 gene editing process was developed to assess the impact of CISH disruption on the molecular and functional phenotype of human peripheral blood T cells and TIL. Tumor-specific T cells with disrupted Cish function were adoptively transferred into tumor-bearing mice and evaluated for efficacy with or without checkpoint blockade. FINDINGS: CISH expression was associated with T cell dysfunction. CISH deletion using CRISPR/Cas9 resulted in hyper-activation and improved functional avidity against tumor-derived neoantigens without perturbing T cell maturation. Cish knockout resulted in increased susceptibility to checkpoint blockade in vivo. CONCLUSIONS: CISH negatively regulates human T cell effector function, and its genetic disruption offers a novel avenue to improve the therapeutic efficacy of adoptive TIL therapy. FUNDING: This study was funded by Intima Bioscience, U.S. and in part through the Intramural program CCR at the National Cancer Institute.


Assuntos
Linfócitos do Interstício Tumoral , Linfócitos T , Transferência Adotiva , Animais , Citocinas/metabolismo , Humanos , Imunoterapia Adotiva/métodos , Camundongos
14.
CRISPR J ; 5(4): 517-535, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35972367

RESUMO

Advances in genome and tissue engineering have spurred significant progress and opportunity for innovation in cancer modeling. Human induced pluripotent stem cells (iPSCs) are an established and powerful tool to study cellular processes in the context of disease-specific genetic backgrounds; however, their application to cancer has been limited by the resistance of many transformed cells to undergo successful reprogramming. Here, we review the status of human iPSC modeling of solid tumors in the context of genetic engineering, including how base and prime editing can be incorporated into "bottom-up" cancer modeling, a term we coined for iPSC-based cancer models using genetic engineering to induce transformation. This approach circumvents the need to reprogram cancer cells while allowing for dissection of the genetic mechanisms underlying transformation, progression, and metastasis with a high degree of precision and control. We also discuss the strengths and limitations of respective engineering approaches and outline experimental considerations for establishing future models.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neoplasias , Sistemas CRISPR-Cas/genética , Edição de Genes , Humanos , Neoplasias/genética , Neoplasias/terapia
15.
Front Cell Dev Biol ; 10: 894635, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784482

RESUMO

More than 60% of hypertrophic cardiomyopathy (HCM)-causing mutations are found in the gene loci encoding cardiac myosin-associated proteins including myosin heavy chain (MHC) and myosin binding protein C (MyBP-C). Moreover, patients with more than one independent HCM mutation may be at increased risk for more severe disease expression and adverse outcomes. However detailed mechanistic understanding, especially at early stages of disease progression, is limited. To identify early-stage HCM triggers, we generated single (MYH7 c.2167C > T [R723C] with a known pathogenic significance in the MHC converter domain) and double (MYH7 c.2167C > T [R723C]; MYH6 c.2173C > T [R725C] with unknown significance) myosin gene mutations in human induced pluripotent stem cells (hiPSCs) using a base-editing strategy. Cardiomyocytes (CMs) derived from hiPSCs with either single or double mutation exhibited phenotypic characteristics consistent with later-stage HCM including hypertrophy, multinucleation, altered calcium handling, metabolism, and arrhythmia. We then probed mutant CMs at time points prior to the detection of known HCM characteristics. We found MYH7/MYH6 dual mutation dysregulated extracellular matrix (ECM) remodeling, altered integrin expression, and interrupted cell-ECM adhesion by limiting the formation of focal adhesions. These results point to a new phenotypic feature of early-stage HCM and reveal novel therapeutic avenues aimed to delay or prohibit disease onset.

16.
Cell Rep Methods ; 2(6): 100236, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35784645

RESUMO

Human primary natural killer (NK) cells are being widely advanced for cancer immunotherapy. However, methods for gene editing of these cells have suffered low transduction rates, high cell death, and loss of transgene expression after expansion. Here, we developed a highly efficient method for site-specific gene insertion in NK cells using CRISPR (Cas9/RNP) and AAVs. We compared AAV vectors designed to mediate gene insertion by different DNA repair mechanisms, homology arm lengths, and virus concentrations. We then validated the method for site-directed gene insertion of CD33-specific CARs into primary human NK cells. CAR transduction was efficient, its expression remained stable after expansion, and it improved efficacy against AML targets.


Assuntos
Edição de Genes , Células Matadoras Naturais , Humanos , Células Matadoras Naturais/metabolismo , Edição de Genes/métodos , Imunoterapia
18.
Sci Adv ; 8(16): eabj5227, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35452291

RESUMO

Here, we report that the LynB splice variant of the Src-family kinase Lyn exerts a dominant immunosuppressive function in vivo, whereas the LynA isoform is uniquely required to restrain autoimmunity in female mice. We used CRISPR-Cas9 gene editing to constrain lyn splicing and expression, generating single-isoform LynA knockout (LynAKO) or LynBKO mice. Autoimmune disease in total LynKO mice is characterized by production of antinuclear antibodies, glomerulonephritis, impaired B cell development, and overabundance of activated B cells and proinflammatory myeloid cells. Expression of LynA or LynB alone uncoupled the developmental phenotype from the autoimmune disease: B cell transitional populations were restored, but myeloid cells and differentiated B cells were dysregulated. These changes were isoform-specific, sexually dimorphic, and distinct from the complete LynKO. Despite the apparent differences in disease etiology and penetrance, loss of either LynA or LynB had the potential to induce severe autoimmune disease with parallels to human systemic lupus erythematosus (SLE).

19.
Nat Commun ; 13(1): 217, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017485

RESUMO

B cell-activating factor (BAFF) binds the three receptors BAFF-R, BCMA, and TACI, predominantly expressed on mature B cells. Almost all B cell cancers are reported to express at least one of these receptors. Here we develop a BAFF ligand-based chimeric antigen receptor (CAR) and generate BAFF CAR-T cells using a non-viral gene delivery method. We show that BAFF CAR-T cells bind specifically to each of the three BAFF receptors and are effective at killing multiple B cell cancers, including mantle cell lymphoma (MCL), multiple myeloma (MM), and acute lymphoblastic leukemia (ALL), in vitro and in vivo using different xenograft models. Co-culture of BAFF CAR-T cells with these tumor cells results in induction of activation marker CD69, degranulation marker CD107a, and multiple proinflammatory cytokines. In summary, we report a ligand-based BAFF CAR-T capable of binding three different receptors, minimizing the potential for antigen escape in the treatment of B cell cancers.


Assuntos
Fator Ativador de Células B/genética , Receptor do Fator Ativador de Células B/genética , Antígeno de Maturação de Linfócitos B/genética , Linfoma de Célula do Manto/terapia , Mieloma Múltiplo/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Proteína Transmembrana Ativadora e Interagente do CAML/genética , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/genética , Antígenos de Diferenciação de Linfócitos T/imunologia , Fator Ativador de Células B/imunologia , Receptor do Fator Ativador de Células B/imunologia , Antígeno de Maturação de Linfócitos B/imunologia , Linfócitos B/imunologia , Linfócitos B/patologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Citotoxicidade Imunológica , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Ativação Linfocitária , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/imunologia , Linfoma de Célula do Manto/patologia , Proteína 1 de Membrana Associada ao Lisossomo/genética , Proteína 1 de Membrana Associada ao Lisossomo/imunologia , Masculino , Camundongos , Mieloma Múltiplo/genética , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Ligação Proteica , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/transplante , Proteína Transmembrana Ativadora e Interagente do CAML/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Mol Ther Nucleic Acids ; 25: 515-523, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34589274

RESUMO

We present MultiEditR (Multiple Edit Deconvolution by Inference of Traces in R), the first algorithm specifically designed to detect and quantify RNA editing from Sanger sequencing (z.umn.edu/multieditr). Although RNA editing is routinely evaluated by measuring the heights of peaks from Sanger sequencing traces, the accuracy and precision of this approach has yet to be evaluated against gold standard next-generation sequencing methods. Through a comprehensive comparison to RNA sequencing (RNA-seq) and amplicon-based deep sequencing, we show that MultiEditR is accurate, precise, and reliable for detecting endogenous and programmable RNA editing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...