Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
bioRxiv ; 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37577570

RESUMO

Western blot is a popular biomolecular analysis method for measuring the relative quantities of independent proteins in complex biological samples. However, variability in quantitative western blot data analysis poses a challenge in designing reproducible experiments. The lack of rigorous quantitative approaches in current western blot statistical methodology may result in irreproducible inferences. Here we describe best practices for the design and analysis of western blot experiments, with examples and demonstrations of how different analytical approaches can lead to widely varying outcomes. To facilitate best practices, we have developed the blotRig tool for designing and analyzing western blot experiments to improve their rigor and reproducibility. The blotRig application includes functions for counterbalancing experimental design by lane position, batch management across gels, and analytics with covariates and random effects.

2.
Front Neurol ; 14: 1152472, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346165

RESUMO

Large animal contusion models of spinal cord injury are an essential precursor to developing and evaluating treatment options for human spinal cord injury. Reducing variability in these experiments has been a recent focus as it increases the sensitivity with which treatment effects can be detected while simultaneously decreasing the number of animals required in a study. Here, we conducted a detailed review to explore if head and neck positioning in a cervical contusion model of spinal cord injury could be a factor impacting the biomechanics of a spinal cord injury, and thus, the resulting outcomes. By reviewing existing literature, we found evidence that animal head/neck positioning affects the exposed level of the spinal cord, morphology of the spinal cord, tissue mechanics and as a result the biomechanics of a cervical spinal cord injury. We posited that neck position could be a hidden factor contributing to variability. Our results indicate that neck positioning is an important factor in studying biomechanics, and that reporting these values can improve inter-study consistency and comparability and that further work needs to be done to standardize positioning for cervical spinal cord contusion injury models.

3.
Front Immunol ; 14: 1074207, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761764

RESUMO

Introduction: Clinical and preclinical data suggest accelerated bone fracture healing in subjects with an additional traumatic brain injury (TBI). Mechanistically, altered metabolism and neuro-endocrine regulations have been shown to influence bone formation after combined fracture and TBI, thereby increasing the bone content in the fracture callus. However, the early inflammatory response towards fracture and TBI has not been investigated in detail so far. This is of great importance, since the early inflammatory phase of fracture healing is known to be essential for the initiation of downstream regenerative processes for adequate fracture repair. Methods: Therefore, we analyzed systemic and local inflammatory mediators and immune cells in mice which were exposed to fracture only or fracture + TBI 6h and 24h after injury. Results: We found a dysregulated systemic immune response and significantly fewer neutrophils and mast cells locally in the fracture hematoma. Further, local CXCL10 expression was significantly decreased in the animals with combined trauma, which correlated significantly with the reduced mast cell numbers. Discussion: Since mast cells and mast cell-derived CXCL10 have been shown to increase osteoclastogenesis, the reduced mast cell numbers might contribute to higher bone content in the fracture callus of fracture + TBI mice due to decreased callus remodeling.


Assuntos
Lesões Encefálicas Traumáticas , Fraturas Ósseas , Animais , Camundongos , Calo Ósseo/metabolismo , Lesões Encefálicas Traumáticas/imunologia , Consolidação da Fratura , Fraturas Ósseas/imunologia , Osteogênese/fisiologia
4.
J Neurotrauma ; 39(15-16): 1030-1038, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35255740

RESUMO

Spinal cord injuries (SCIs) frequently occur in combination with other major organ injuries, such as traumatic brain injury (TBI) and injuries to the chest, abdomen, and musculoskeletal system (e.g., extremity, pelvic, and spine fractures). However, the effects of appendicular fractures on SCI recovery are poorly understood. We investigated whether the presence of SCI-concurrent appendicular fractures is predictive of a less robust SCI recovery. Patients enrolled in the Transforming Research and Clinical Knowledge in SCI (TRACK-SCI) prospective cohort study were identified and included in this secondary analysis study. Inclusion criteria resulted in 147 patients, consisting of 120 with isolated SCIs and 27 with concomitant appendicular fracture. The primary outcome was American Spinal Injury Association (ASIA) Impairment Scale (AIS) neurological grades at hospital discharge. Secondary outcomes included hospital length of stay, intensive care unit (ICU) length of stay, and AIS grade improvement during hospitalization. Multivariable binomial logistical regression analyses assessed whether SCI-concomitant appendicular fractures associate with SCI function and secondary outcomes. These analyses were adjusted for age, gender, injury severity, and non-fracture polytrauma. Appendicular fractures were associated with more severe AIS grades at hospital discharge, though covariate adjustments diminished statistical significance of this effect. Notably, non-fracture injuries to the chest and abdomen were influential covariates. Secondary analyses suggested that appendicular fractures also increased hospital length of stay. Our study indicated that SCI-associated polytrauma is important for predicting SCI functional outcomes. Further statistical evaluation is required to disentangle the effects of appendicular fractures, non-fracture solid organ injury, and SCI physiology to improve health outcomes among SCI patients.


Assuntos
Fraturas Ósseas , Traumatismo Múltiplo , Traumatismos da Medula Espinal , Fraturas da Coluna Vertebral , Fraturas Ósseas/complicações , Fraturas Ósseas/epidemiologia , Humanos , Estudos Prospectivos , Estudos Retrospectivos , Traumatismos da Medula Espinal/complicações , Fraturas da Coluna Vertebral/complicações
5.
J Orthop Translat ; 28: 39-46, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33717980

RESUMO

BACKGROUND: Trauma is the leading cause of death and disability worldwide, especially in the young population. Cardiac injuries are an independent predictor for a poor overall outcome after trauma. The aim of the present study was to analyze systemic inflammation as well as local cardiac inflammation after experimental limb-, neuro- and combined trauma in mice. METHODS: Male C57BL/6 mice received either a closed tibia fracture (Fx), isolated traumatic brain injury (TBI) or a combination of both (Fx â€‹+ â€‹TBI). Control animals underwent sham procedure. After 6 and 24 â€‹h, systemic levels of inflammatory mediators were analyzed, respectively. Locally, cardiac inflammation and cardiac structural alterations were investigated in left ventricular tissue of mice 6 and 24 â€‹h after trauma. RESULTS: Mice showed enhanced systemic inflammation after combined trauma, which was manifested by increased levels of KC, MCP-1 and G-CSF. Locally, mice exhibited increased expression of inflammatory cytokines (IL-1ß, TNF) in heart tissue, which was probably mediated via toll-like receptor (TLR) signaling. Furthermore, mice demonstrated a redistribution of connexin 43 in cardiac tissue, which appeared predominantly after combined trauma. Besides inflammation and structural cardiac alterations, expression of glucose transporter 4 (GLUT4) mRNA was increased in the heart early after TBI and after combination of TBI and limb fracture, indicating a modification of energy metabolism. Early after combination of TBI and tibia fracture, nitrosative stress was increased, manifested by elevation of nitrotyrosine in cardiac tissue. Finally, mice showed a trend of increased systemic levels of cardiac troponin I and heart-fatty acid binding protein (HFABP) after combined trauma, which was associated with a significant decrease of troponin I and HFABP mRNA expression in cardiac tissue after TBI and combination of TBI and limb fracture. CONCLUSION: Mice exhibited early cardiac alterations as well as alterations in cardiac glucose transporter expression, indicating a modification of energy metabolism, which might be linked to increased systemic- and local cardiac inflammation after limb-, neuro- and combined trauma. These cardiac alterations might predispose individuals for secondary cardiac damage after trauma that might compromise cardiac function after TBI and long bone fracture. TRANSLATIONAL POTENTIAL STATEMENT: Injuries to the head and extremities frequently occur after severe trauma. In our study, we analyzed the effects of closed tibia fracture, isolated TBI, and the combination of both injuries with regard to the development of post-traumatic secondary cardiac injuries.

6.
Br J Anaesth ; 125(3): 298-307, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32624183

RESUMO

BACKGROUND: Postoperative cognitive decline (PCD) requires microglial activation. Voltage-gated Kv1.3 potassium channels are involved in microglial activation. We determined the role of Kv1.3 in PCD and the efficacy and safety of inhibiting Kv1.3 with phenoxyalkoxypsoralen-1 (PAP-1) in preventing PCD in a mouse model. METHODS: After institutional approval, we assessed whether Kv1.3-deficient mice (Kv1.3-/-) exhibited PCD, evidenced by tibial-fracture surgery-induced decline in aversive freezing behaviour, and whether PAP-1 could prevent PCD and postoperative neuroinflammation in PCD-vulnerable diet-induced obese (DIO) mice. We also evaluated whether PAP-1 altered either postoperative peripheral inflammation or tibial-fracture healing. RESULTS: Freezing behaviour was unaltered in postoperative Kv1.3-/- mice. In DIO mice, PAP-1 prevented postoperative (i) attenuation of freezing behaviour (54 [17.3]% vs 33.4 [12.7]%; P=0.03), (ii) hippocampal microglial activation by size (130 [31] pixels vs 249 [49]; P<0.001) and fluorescence intensity (12 000 [2260] vs 20 800 [5080] absorbance units; P<0.001), and (iii) hippocampal upregulation of interleukin-6 (IL-6) (14.9 [5.7] vs 25.6 [10.4] pg mg-1; P=0.011). Phenoxyalkoxypsoralen-1 neither affected surgery-induced upregulation of plasma IL-6 nor cartilage and bone components of the surgical fracture callus. CONCLUSIONS: Microglial-mediated PCD requires Kv1.3 activity, determined by genetic and pharmacological targeting approaches. Phenoxyalkoxypsoralen-1 blockade of Kv1.3 prevented surgery-induced hippocampal microglial activation and neuroinflammation in mice known to be vulnerable to PCD. Regarding perioperative safety, these beneficial effects of PAP-1 treatment occurred without impacting fracture healing. Kv1.3 blockers, currently undergoing clinical trials for other conditions, may represent an effective and safe intervention to prevent PCD.


Assuntos
Disfunção Cognitiva/prevenção & controle , Encefalite/prevenção & controle , Canal de Potássio Kv1.3/antagonistas & inibidores , Complicações Pós-Operatórias/prevenção & controle , Cicatrização/fisiologia , Animais , Modelos Animais de Doenças , Camundongos
7.
Sci Rep ; 9(1): 12199, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31434912

RESUMO

Polytraumatic injuries, specifically long bone fracture and traumatic brain injury (TBI), frequently occur together. Clinical observation has long held that TBI can accelerate fracture healing, yet the complexity and heterogeneity of these injuries has produced conflicting data with limited information on underlying mechanisms. We developed a murine polytrauma model with TBI and fracture to evaluate healing in a controlled system. Fractures were created both contralateral and ipsilateral to the TBI to test whether differential responses of humoral and/or neuronal systems drove altered healing patterns. Our results show increased bone formation after TBI when injuries occur contralateral to each other, rather than ipsilateral, suggesting a role of the nervous system based on the crossed neuroanatomy of motor and sensory systems. Analysis of the humoral system shows that blood cell counts and inflammatory markers are differentially modulated by polytrauma. A data-driven multivariate analysis integrating all outcome measures showed a distinct pathological state of polytrauma and co-variations between fracture, TBI and systemic markers. Taken together, our results suggest that a contralateral bone fracture and TBI alter the local neuroinflammatory state to accelerate early fracture healing. We believe applying a similar data-driven approach to clinical polytrauma may help to better understand the complicated pathophysiological mechanisms of healing.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Fraturas Ósseas/metabolismo , Traumatismo Múltiplo/metabolismo , Animais , Lesões Encefálicas Traumáticas/patologia , Modelos Animais de Doenças , Fraturas Ósseas/patologia , Masculino , Camundongos , Traumatismo Múltiplo/patologia
8.
J Magn Reson Imaging ; 47(1): 78-90, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28471543

RESUMO

PURPOSE: To couple quantitative compositional MRI, gait analysis, and machine learning multidimensional data analysis to study osteoarthritis (OA). OA is a multifactorial disorder accompanied by biochemical and morphological changes in the articular cartilage, modulated by skeletal biomechanics and gait. While we can now acquire detailed information about the knee joint structure and function, we are not yet able to leverage the multifactorial factors for diagnosis and disease management of knee OA. MATERIALS AND METHODS: We mapped 178 subjects in a multidimensional space integrating: demographic, clinical information, gait kinematics and kinetics, cartilage compositional T1ρ and T2 and R2 -R1ρ (1/T2 -1/T1ρ ) acquired at 3T and whole-organ magnetic resonance imaging score morphological grading. Topological data analysis (TDA) and Kolmogorov-Smirnov test were adopted for data integration, analysis, and hypothesis generation. Regression models were used for hypothesis testing. RESULTS: The results of the TDA showed a network composed of three main patient subpopulations, thus potentially identifying new phenotypes. T2 and T1ρ values (T2 lateral femur P = 1.45*10-8 , T1ρ medial tibia P = 1.05*10-5 ), the presence of femoral cartilage defects (P = 0.0013), lesions in the meniscus body (P = 0.0035), and race (P = 2.44*10-4 ) were key markers in the subpopulation classification. Within one of the subpopulations we observed an association between the composite metric R2 -R1ρ and the longitudinal progression of cartilage lesions. CONCLUSION: The analysis presented demonstrates some of the complex multitissue biochemical and biomechanical interactions that define joint degeneration and OA using a multidimensional approach, and potentially indicates that R2 -R1ρ may be an imaging biomarker for early OA. LEVEL OF EVIDENCE: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:78-90.


Assuntos
Cartilagem/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Osteoartrite do Joelho/diagnóstico por imagem , Adulto , Idoso , Fenômenos Biomecânicos , Índice de Massa Corporal , Estudos de Casos e Controles , Progressão da Doença , Reações Falso-Positivas , Feminino , Fêmur/diagnóstico por imagem , Marcha , Humanos , Estudos Longitudinais , Aprendizado de Máquina , Masculino , Menisco/diagnóstico por imagem , Pessoa de Meia-Idade , Modelos Estatísticos , Fenótipo , Curva ROC , Análise de Regressão , Tíbia/diagnóstico por imagem
9.
PLoS One ; 12(2): e0171937, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28182676

RESUMO

Spasticity is a frequent chronic complication in individuals with spinal cord injury (SCI). However, the severity of spasticity varies in patients with SCI. Therefore, an evaluation method is needed to determine the severity of spasticity. We used a contusive SCI model that is suitable for clinical translation. In this study, we examined the feasibility of the swimming test and an EMG for evaluating spasticity in a contusive SCI rat model. Sprague-Dawley rats received an injury at the 8th thoracic vertebra. Swimming tests were performed 3 to 6 weeks after SCI induction. We placed the SCI rats into spasticity-strong or spasticity-weak groups based on the frequency of spastic behavior during the swimming test. Subsequently, we recorded the Hoffman reflex (H-reflex) and examined the immunoreactivity of serotonin (5-HT) and its receptor (5-HT2A) in the spinal tissues of the SCI rats. The spasticity-strong group had significantly decreased rate-dependent depression of the H-reflex compared to the spasticity-weak group. The area of 5-HT2A receptor immunoreactivity was significantly increased in the spasticity-strong group. Thus, both electrophysiological and histological evaluations indicate that the spasticity-strong group presented with a more severe upper motor neuron syndrome. We also observed the groups in their cages for 20 hours. Our results suggest that the swimming test provides an accurate evaluation of spasticity in this contusive SCI model. We believe that the swimming test is an effective method for evaluating spastic behaviors and developing treatments targeting spasticity after SCI.


Assuntos
Espasticidade Muscular/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Natação , Animais , Feminino , Reflexo H , Neurônios Motores/metabolismo , Neurônios Motores/fisiologia , Espasticidade Muscular/etiologia , Espasticidade Muscular/patologia , Ratos , Ratos Sprague-Dawley , Receptor 5-HT2A de Serotonina/metabolismo , Traumatismos da Medula Espinal/complicações
10.
Neurosci Lett ; 652: 74-81, 2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-28007646

RESUMO

Spinal cord injury (SCI) is a multifaceted phenomenon associated with alterations in both motor function and sensory function. A majority of patients with SCI report sensory disturbances, including not only loss of sensation, but in many cases enhanced abnormal sensation, dysesthesia and pain. Development of therapeutics to treat these abnormal sensory changes require common measurement tools that can enable cross-species translation from animal models to human patients. We review the current literature on translational nociception/pain measurement in SCI and discuss areas for further development. Although a number of tools exist for measuring both segmental and affective sensory changes, we conclude that there is a pressing need for better, integrative measurement of nociception/pain outcomes across species to enhance precise therapeutic innovation for sensory dysfunction in SCI.


Assuntos
Medição da Dor/métodos , Traumatismos da Medula Espinal/fisiopatologia , Animais , Comportamento Animal , Biomarcadores/análise , Condicionamento Psicológico , Humanos , Plasticidade Neuronal , Nociceptividade , Dor/fisiopatologia , Reflexo , Especificidade da Espécie , Traumatismos da Medula Espinal/psicologia , Pesquisa Translacional Biomédica
11.
J Neurotrauma ; 34(10): 1831-1840, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27875927

RESUMO

Spinal cord injury (SCI) is a devastating syndrome that produces dysfunction in motor and sensory systems, manifesting as chronic paralysis, sensory changes, and pain disorders. The multi-faceted and heterogeneous nature of SCI has made effective rehabilitative strategies challenging. Work over the last 40 years has aimed to overcome these obstacles by harnessing the intrinsic plasticity of the spinal cord to improve functional locomotor recovery. Intensive training after SCI facilitates lower extremity function and has shown promise as a tool for retraining the spinal cord by engaging innate locomotor circuitry in the lumbar cord. As new training paradigms evolve, the importance of appropriate afferent input has emerged as a requirement for adaptive plasticity. The integration of kinematic, sensory, and loading force information must be closely monitored and carefully manipulated to optimize training outcomes. Inappropriate peripheral input may produce lasting maladaptive sensory and motor effects, such as central pain and spasticity. Thus, it is important to closely consider the type of afferent input the injured spinal cord receives. Here we review preclinical and clinical input parameters fostering adaptive plasticity, as well as those producing maladaptive plasticity that may undermine neurorehabilitative efforts. We differentiate between passive (hindlimb unloading [HU], limb immobilization) and active (peripheral nociception) forms of aberrant input. Furthermore, we discuss the timing of initiating exposure to afferent input after SCI for promoting functional locomotor recovery. We conclude by presenting a candidate rapid synaptic mechanism for maladaptive plasticity after SCI, offering a pharmacological target for restoring the capacity for adaptive spinal plasticity in real time.


Assuntos
Locomoção/fisiologia , Plasticidade Neuronal/fisiologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Humanos , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Locomoção/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico
12.
J Neuroinflammation ; 13(1): 235, 2016 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-27596241

RESUMO

BACKGROUND: Brain inflammation is a crucial component of demyelinating diseases such as multiple sclerosis. Although the initiation of inflammatory processes by the production of cytokines and chemokines by immune cells is well characterized, the processes of inflammatory aggravation of demyelinating diseases remain obscure. Here, we examined the contribution of Erk2, one of the isoforms of the extracellular signal-regulated kinase, to demyelinating inflammation. METHODS: We used the cuprizone-induced demyelinating mouse model. To examine the role of Erk2, we used Nestin-cre-driven Erk2-deficient mice. We also established primary culture of microglia or astrocytes in order to reveal the crosstalk between two cell types and to determine the downstream cascades of Erk2 in astrocytes. RESULTS: First, we found that Erk is especially activated in astrocytes within the corpus callosum before the peak of demyelination (at 4 weeks after the start of cuprizone feeding). Then, we found that in our model, genetic ablation of Erk2 from neural cells markedly preserved myelin structure and motor function as measured by the rota-rod test. While the initial activation of microglia was not altered in Erk2-deficient mice, these mice showed reduced expression of inflammatory mediators at 3-4 model weeks. Furthermore, the subsequent inflammatory glial responses, characterized by accumulation of microglia and reactive astrocytes, were significantly attenuated in Erk2-deficient mice. These data indicate that Erk2 in astrocytes is involved in augmentation of inflammation and gliosis. We also found that activated, cultured microglia could induce Erk2 activation in cultured astrocytes and subsequent production of inflammatory mediators such as Ccl-2. CONCLUSIONS: Our results suggest that Erk2 activation in astrocytes plays a crucial role in aggravating demyelinating inflammation by inducing inflammatory mediators and gliosis. Thus, therapies targeting Erk2 function in glial cells may be a promising approach to the treatment of distinct demyelinating diseases.


Assuntos
Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/complicações , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/metabolismo , Gliose/etiologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Células Cultivadas , Cuprizona/toxicidade , Citocinas/genética , Citocinas/metabolismo , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/induzido quimicamente , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Embrião de Mamíferos , Ativação Enzimática/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Gliose/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Quinase 1 Ativada por Mitógeno/genética , Inibidores da Monoaminoxidase/toxicidade , Transtornos Motores/etiologia , Transtornos Motores/fisiopatologia , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , Nestina/genética , Nestina/metabolismo , Neuroglia/química , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Wistar
13.
Sci Rep ; 6: 24279, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27067799

RESUMO

Endogenous neural stem/progenitor cells (NPCs) can migrate toward sites of injury, but the migration activity of NPCs is insufficient to regenerate damaged brain tissue. In this study, we showed that p38 MAP kinase (p38) is expressed in doublecortin-positive adult NPCs. Experiments using the p38 inhibitor SB203580 revealed that endogenous p38 participates in NPC migration. To enhance NPC migration, we generated a cell-permeable wild-type p38 protein (PTD-p38WT) in which the HIV protein transduction domain (PTD) was fused to the N-terminus of p38. Treatment with PTD-p38WT significantly promoted the random migration of adult NPCs without affecting cell survival or differentiation; this effect depended on the cell permeability and kinase activity of the fusion protein. These findings indicate that PTD-p38WT is a novel and useful tool for unraveling the roles of p38, and that this protein provides a reasonable approach for regenerating the injured brain by enhancing NPC migration.


Assuntos
Movimento Celular/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Camundongos Endogâmicos C57BL , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética
14.
J Neurosci Res ; 92(12): 1647-58, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25044014

RESUMO

The inflammatory response following spinal cord injury (SCI) has both harmful and beneficial effects; however, it can be modulated for therapeutic benefit. Endotoxin/lipopolysaccharide (LPS) preconditioning, a well-established method for modifying the immune reaction, has been shown to attenuate damage induced by stroke and brain trauma in rodent models. Although such effects likely are conveyed by tissue-repairing functions of the inflammatory response, the mechanisms that control the effects have not yet been elucidated. The present study preconditioned C57BL6/J mice with 0.05 mg/kg of LPS 48 hr before inducing contusion SCI to investigate the effect of LPS preconditioning on the activation of macrophages/microglia. We found that LPS preconditioning promotes the polarization of M1/M2 macrophages/microglia toward an M2 phenotype in the injured spinal cord on quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and immunohistochemical analyses. Flow cytometric analyses reveal that LPS preconditioning facilitates M2 activation in resident microglia but not in infiltrating macrophages. Augmented M2 activation was accompanied by vascularization around the injured lesion, resulting in improvement in both tissue reorganization and functional recovery. Furthermore, we found that M2 activation induced by LPS preconditioning is regulated by interleukin-10 gene expression, which was preceded by the transcriptional activation of interferon regulatory factor (IRF)-3, as demonstrated by Western blotting and an IRF-3 binding assay. Altogether, our findings demonstrate that LPS preconditioning has a therapeutic effect on SCI through the modulation of M1/M2 polarization of resident microglia. The present study suggests that controlling M1/M2 polarization through endotoxin signal transduction could become a promising therapeutic strategy for various central nervous system diseases. © 2014 Wiley Periodicals, Inc.


Assuntos
Lipopolissacarídeos/administração & dosagem , Macrófagos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Traumatismos da Medula Espinal/patologia , Animais , Células da Medula Óssea/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Esquema de Medicação , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Fator Regulador 3 de Interferon/metabolismo , Interleucina-10/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Transtornos dos Movimentos/etiologia , Proteínas do Tecido Nervoso/metabolismo , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/tratamento farmacológico
15.
Cancer Sci ; 100(7): 1227-33, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19486338

RESUMO

Osteosarcoma is the most prevalent bone malignant tumor in children and adolescents, and displays heterogeneous histology and high propensity for distant metastasis. Although adjuvant chemotherapy remarkably improved treatment outcome over the past few decades, prognosis for osteosarcoma patients with pulmonary metastasis is still unsatisfactory. To identify novel therapeutic targets for osteosarcoma, we investigated the gene expression profile of osteosarcomas by cDNA microarray analysis and found transactivation of receptor tyrosine kinase-like orphan receptor 2 (ROR2) expression in the majority of osteosarcoma samples. Treatment of osteosarcoma cell lines with siRNA against ROR2 significantly inhibited cell proliferation and migration. We also identified wingless-type MMTV integration site family, member 5B (WNT5B) as a putative ROR2 ligand and that the physiological interaction of WNT5B and ROR2 could enhance cell migration, indicating the possible roles of ROR2 and WNT5B in the metastatic property of osteosarcoma cells. Taken together, our findings revealed that the WNT5B/ROR2 signaling pathway is a promising therapeutic target for osteosarcoma.


Assuntos
Neoplasias Ósseas/enzimologia , Osteossarcoma/enzimologia , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Neoplasias Ósseas/tratamento farmacológico , Células COS , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Humanos , Camundongos , Células NIH 3T3 , Osteossarcoma/tratamento farmacológico , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/genética , Transdução de Sinais , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...