Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Blood Adv ; 7(3): 351-364, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35468619

RESUMO

NPM1 is among the most frequently mutated genes in acute myeloid leukemia (AML). Mutations in the NPM1 gene result in the increased export of NPM1 to the cytoplasm (NPM1c) and are associated with multiple transforming events including the aberrant upregulation of MEIS1 that maintains stem cell and cell cycle-associated pathways in NPM1c AML. However, another consequence of the NPM1c mutation is the inadequate levels of NPM1 wild-type in the nucleus and nucleolus, caused by the loss of one wild-type allele in addition to enforced NPM1 nuclear export. The contribution of NPM1 haploinsufficiency independently of the NPM1 mutation to AML development and its relationship with MEIS1 function is poorly understood. Using mouse models, our study shows that NPM1 haploinsufficiency paired with MEIS1 overexpression is sufficient to induce a fully penetrant AML in mice that transcriptionally resembles human NPM1c AML. NPM1 haploinsufficiency alters MEIS1-binding occupancies such that it binds the promoter of the oncogene structural maintenance of chromosome protein 4 (SMC4) in NPM1 haploinsufficient AML cells but not in NPM1 wild-type-harboring Hoxa9/Meis1-transformed cells. SMC4 is higher expressed in haploinsufficient and NPM1c+ AML cells, which are more vulnerable to the disruption of the MEIS1-SMC4 axis compared with AML cells with nonmutated NPM1. Taken together, our study underlines that NPM1 haploinsufficiency on its own is a key factor of myeloid leukemogenesis and characterizes the MEIS1-SMC4 axis as a potential therapeutic target in this AML subtype.


Assuntos
Haploinsuficiência , Leucemia Mieloide Aguda , Humanos , Animais , Camundongos , Leucemia Mieloide Aguda/tratamento farmacológico , Proteína Meis1/genética , Proteína Meis1/metabolismo , Núcleo Celular/metabolismo , Mutação , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/uso terapêutico
2.
Nat Commun ; 13(1): 5432, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114205

RESUMO

Reprogramming of somatic cells into induced Pluripotent Stem Cells (iPSCs) is a major leap towards personalised approaches to disease modelling and cell-replacement therapies. However, we still lack the ability to fully control the epigenetic status of iPSCs, which is a major hurdle for their downstream applications. Epigenetic fidelity can be tracked by genomic imprinting, a phenomenon dependent on DNA methylation, which is frequently perturbed in iPSCs by yet unknown reasons. To try to understand the causes underlying these defects, we conducted a thorough imprinting analysis using IMPLICON, a high-throughput method measuring DNA methylation levels, in multiple female and male murine iPSC lines generated under different experimental conditions. Our results show that imprinting defects are remarkably common in iPSCs, but their nature depends on the sex of donor cells and their response to culture conditions. Imprints in female iPSCs resist the initial genome-wide DNA demethylation wave during reprogramming, but ultimately cells accumulate hypomethylation defects irrespective of culture medium formulations. In contrast, imprinting defects on male iPSCs depends on the experimental conditions and arise during reprogramming, being mitigated by the addition of vitamin C (VitC). Our findings are fundamental to further optimise reprogramming strategies and generate iPSCs with a stable epigenome.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Ácido Ascórbico/metabolismo , Metilação de DNA , Feminino , Genoma , Impressão Genômica , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos
4.
Cancer Immunol Immunother ; 71(4): 989-998, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34580764

RESUMO

Despite the conventional view that a truly random V(D)J recombination process should generate a highly diverse immune repertoire, emerging reports suggest that there is a certain bias toward the generation of shared/public immune receptor chains. These studies were performed in viral diseases where public T cell receptors (TCR) appear to confer better protective responses. Selective pressures generating common TCR clonotypes are currently not well understood, but it is believed that they confer a growth advantage. As very little is known about public TCR clonotypes in cancer, here we set out to determine the extent of shared TCR clonotypes in the intra-tumor microenvironments of virus- and non-virus-driven head and neck cancers using TCR sequencing. We report that tumor-infiltrating T cell clonotypes were indeed shared across individuals with the same cancer type, where the majority of shared sequences were specific to the cancer type (i.e., viral versus non-viral). These shared clonotypes were not particularly enriched in EBV-associated nasopharynx cancer but, in both cancers, exhibited distinct characteristics, namely shorter CDR3 lengths, restricted V- and J-gene usages, and also demonstrated convergent V(D)J recombination. Many of these shared TCRs were expressed in patients with a shared HLA background. Pattern recognition of CDR3 amino acid sequences revealed strong convergence to specific pattern motifs, and these motifs were uniquely found to each cancer type. This suggests that they may be enriched for specificity to common antigens found in the tumor microenvironment of different cancers. The identification of shared TCRs in infiltrating tumor T cells not only adds to our understanding of the tumor-adaptive immune recognition but could also serve as disease-specific biomarkers and guide the development of future immunotherapies.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Receptores de Antígenos de Linfócitos T , Linfócitos T
5.
Nat Genet ; 53(10): 1443-1455, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34556857

RESUMO

Altered transcription is a cardinal feature of acute myeloid leukemia (AML); however, exactly how mutations synergize to remodel the epigenetic landscape and rewire three-dimensional DNA topology is unknown. Here, we apply an integrated genomic approach to a murine allelic series that models the two most common mutations in AML: Flt3-ITD and Npm1c. We then deconvolute the contribution of each mutation to alterations of the epigenetic landscape and genome organization, and infer how mutations synergize in the induction of AML. Our studies demonstrate that Flt3-ITD signals to chromatin to alter the epigenetic environment and synergizes with mutations in Npm1c to alter gene expression and drive leukemia induction. These analyses also allow the identification of long-range cis-regulatory circuits, including a previously unknown superenhancer of Hoxa locus, as well as larger and more detailed gene-regulatory networks, driven by transcription factors including PU.1 and IRF8, whose importance we demonstrate through perturbation of network members.


Assuntos
Montagem e Desmontagem da Cromatina/genética , DNA de Neoplasias/química , Regulação Leucêmica da Expressão Gênica , Histonas/metabolismo , Leucemia Mieloide Aguda/genética , Mutação/genética , Processamento de Proteína Pós-Traducional , Animais , Sequência de Bases , Modelos Animais de Doenças , Elementos Facilitadores Genéticos/genética , Redes Reguladoras de Genes , Loci Gênicos , Humanos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/metabolismo , Nucleofosmina , Análise de Componente Principal , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica , Tirosina Quinase 3 Semelhante a fms/metabolismo
6.
Blood ; 136(21): 2442-2456, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32589720

RESUMO

The interaction of menin (MEN1) and MLL (MLL1, KMT2A) is a dependency and provides a potential opportunity for treatment of NPM1-mutant (NPM1mut) and MLL-rearranged (MLL-r) leukemias. Concomitant activating driver mutations in the gene encoding the tyrosine kinase FLT3 occur in both leukemias and are particularly common in the NPM1mut subtype. In this study, transcriptional profiling after pharmacological inhibition of the menin-MLL complex revealed specific changes in gene expression, with downregulation of the MEIS1 transcription factor and its transcriptional target gene FLT3 being the most pronounced. Combining menin-MLL inhibition with specific small-molecule kinase inhibitors of FLT3 phosphorylation resulted in a significantly superior reduction of phosphorylated FLT3 and transcriptional suppression of genes downstream of FLT3 signaling. The drug combination induced synergistic inhibition of proliferation, as well as enhanced apoptosis, compared with single-drug treatment in models of human and murine NPM1mut and MLL-r leukemias harboring an FLT3 mutation. Primary acute myeloid leukemia (AML) cells harvested from patients with NPM1mutFLT3mut AML showed significantly better responses to combined menin and FLT3 inhibition than to single-drug or vehicle control treatment, whereas AML cells with wild-type NPM1, MLL, and FLT3 were not affected by either of the 2 drugs. In vivo treatment of leukemic animals with MLL-r FLT3mut leukemia reduced leukemia burden significantly and prolonged survival compared with results in the single-drug and vehicle control groups. Our data suggest that combined menin-MLL and FLT3 inhibition represents a novel and promising therapeutic strategy for patients with NPM1mut or MLL-r leukemia and concurrent FLT3 mutation.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Proteína de Leucina Linfoide-Mieloide/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Técnicas de Cocultura , Sinergismo Farmacológico , Humanos , Leucemia Mieloide Aguda/genética , Camundongos , Camundongos Endogâmicos NOD , Proteína Meis1/biossíntese , Proteína Meis1/genética , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Nucleofosmina , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional , Distribuição Aleatória , Transcrição Gênica/efeitos dos fármacos , Tirosina Quinase 3 Semelhante a fms/biossíntese , Tirosina Quinase 3 Semelhante a fms/genética
7.
Cell Rep ; 30(3): 739-754.e4, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31968250

RESUMO

Vitamin D (VD) is a known differentiating agent, but the role of VD receptor (VDR) is still incompletely described in acute myeloid leukemia (AML), whose treatment is based mostly on antimitotic chemotherapy. Here, we present an unexpected role of VDR in normal hematopoiesis and in leukemogenesis. Limited VDR expression is associated with impaired myeloid progenitor differentiation and is a new prognostic factor in AML. In mice, the lack of Vdr results in increased numbers of hematopoietic and leukemia stem cells and quiescent hematopoietic stem cells. In addition, malignant transformation of Vdr-/- cells results in myeloid differentiation block and increases self-renewal. Vdr promoter is methylated in AML as in CD34+ cells, and demethylating agents induce VDR expression. Association of VDR agonists with hypomethylating agents promotes leukemia stem cell exhaustion and decreases tumor burden in AML mouse models. Thus, Vdr functions as a regulator of stem cell homeostasis and leukemic propagation.


Assuntos
Medula Óssea/patologia , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Receptores de Calcitriol/metabolismo , Animais , Apoptose/efeitos dos fármacos , Azacitidina/farmacologia , Medula Óssea/efeitos dos fármacos , Contagem de Células , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , Progressão da Doença , Feminino , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/patologia , Células Mieloides/efeitos dos fármacos , Células Mieloides/metabolismo , Células Mieloides/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Oncogenes , Regiões Promotoras Genéticas/genética , Transdução de Sinais/efeitos dos fármacos , Análise de Sobrevida , Ensaio Tumoral de Célula-Tronco
8.
Nat Commun ; 10(1): 4543, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31586074

RESUMO

Sequencing studies of diffuse large B cell lymphoma (DLBCL) have identified hundreds of recurrently altered genes. However, it remains largely unknown whether and how these mutations may contribute to lymphomagenesis, either individually or in combination. Existing strategies to address this problem predominantly utilize cell lines, which are limited by their initial characteristics and subsequent adaptions to prolonged in vitro culture. Here, we describe a co-culture system that enables the ex vivo expansion and viral transduction of primary human germinal center B cells. Incorporation of CRISPR/Cas9 technology enables high-throughput functional interrogation of genes recurrently mutated in DLBCL. Using a backbone of BCL2 with either BCL6 or MYC, we identify co-operating genetic alterations that promote growth or even full transformation into synthetically engineered DLBCL models. The resulting tumors can be expanded and sequentially transplanted in vivo, providing a scalable platform to test putative cancer genes and to create mutation-directed, bespoke lymphoma models.


Assuntos
Linfócitos B/patologia , Linfoma Difuso de Grandes Células B/genética , Cultura Primária de Células/métodos , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Proliferação de Células/genética , Técnicas de Cocultura/métodos , Vetores Genéticos/genética , Centro Germinativo/citologia , Ensaios de Triagem em Larga Escala , Humanos , Linfoma Difuso de Grandes Células B/patologia , Camundongos , Gradação de Tumores , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-myc/genética , Retroviridae/genética , Transdução Genética , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Blood ; 130(17): 1911-1922, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-28835438

RESUMO

NPM1 mutations define the commonest subgroup of acute myeloid leukemia (AML) and frequently co-occur with FLT3 internal tandem duplications (ITD) or, less commonly, NRAS or KRAS mutations. Co-occurrence of mutant NPM1 with FLT3-ITD carries a significantly worse prognosis than NPM1-RAS combinations. To understand the molecular basis of these observations, we compare the effects of the 2 combinations on hematopoiesis and leukemogenesis in knock-in mice. Early effects of these mutations on hematopoiesis show that compound Npm1cA/+;NrasG12D/+ or Npm1cA;Flt3ITD share a number of features: Hox gene overexpression, enhanced self-renewal, expansion of hematopoietic progenitors, and myeloid differentiation bias. However, Npm1cA;Flt3ITD mutants displayed significantly higher peripheral leukocyte counts, early depletion of common lymphoid progenitors, and a monocytic bias in comparison with the granulocytic bias in Npm1cA/+;NrasG12D/+ mutants. Underlying this was a striking molecular synergy manifested as a dramatically altered gene expression profile in Npm1cA;Flt3ITD , but not Npm1cA/+;NrasG12D/+ , progenitors compared with wild-type. Both double-mutant models developed high-penetrance AML, although latency was significantly longer with Npm1cA/+;NrasG12D/+ During AML evolution, both models acquired additional copies of the mutant Flt3 or Nras alleles, but only Npm1cA/+;NrasG12D/+ mice showed acquisition of other human AML mutations, including IDH1 R132Q. We also find, using primary Cas9-expressing AMLs, that Hoxa genes and selected interactors or downstream targets are required for survival of both types of double-mutant AML. Our results show that molecular complementarity underlies the higher frequency and significantly worse prognosis associated with NPM1c/FLT3-ITD vs NPM1/NRAS-G12D-mutant AML and functionally confirm the role of HOXA genes in NPM1c-driven AML.


Assuntos
Leucemia Mieloide Aguda/genética , Mutação/genética , Proteínas Nucleares/genética , Alelos , Animais , Diferenciação Celular , Autorrenovação Celular , Sobrevivência Celular/genética , Progressão da Doença , Dosagem de Genes , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Células-Tronco Multipotentes/metabolismo , Mielopoese , Proteínas Nucleares/metabolismo , Nucleofosmina , Penetrância , Fenótipo , Fatores de Transcrição/genética , Transcriptoma/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
10.
Cell Rep ; 17(4): 1193-1205, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27760321

RESUMO

Acute myeloid leukemia (AML) is an aggressive cancer with a poor prognosis, for which mainstream treatments have not changed for decades. To identify additional therapeutic targets in AML, we optimize a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) screening platform and use it to identify genetic vulnerabilities in AML cells. We identify 492 AML-specific cell-essential genes, including several established therapeutic targets such as DOT1L, BCL2, and MEN1, and many other genes including clinically actionable candidates. We validate selected genes using genetic and pharmacological inhibition, and chose KAT2A as a candidate for downstream study. KAT2A inhibition demonstrated anti-AML activity by inducing myeloid differentiation and apoptosis, and suppressed the growth of primary human AMLs of diverse genotypes while sparing normal hemopoietic stem-progenitor cells. Our results propose that KAT2A inhibition should be investigated as a therapeutic strategy in AML and provide a large number of genetic vulnerabilities of this leukemia that can be pursued in downstream studies.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Testes Genéticos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Terapia de Alvo Molecular , Adulto , Apoptose , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Histona Acetiltransferases/antagonistas & inibidores , Histona Acetiltransferases/metabolismo , Humanos , Reprodutibilidade dos Testes
11.
Cancer Discov ; 6(10): 1166-1181, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27535106

RESUMO

Homeobox (HOX) proteins and the receptor tyrosine kinase FLT3 are frequently highly expressed and mutated in acute myeloid leukemia (AML). Aberrant HOX expression is found in nearly all AMLs that harbor a mutation in the Nucleophosmin (NPM1) gene, and FLT3 is concomitantly mutated in approximately 60% of these cases. Little is known about how mutant NPM1 (NPM1mut) cells maintain aberrant gene expression. Here, we demonstrate that the histone modifiers MLL1 and DOT1L control HOX and FLT3 expression and differentiation in NPM1mut AML. Using a CRISPR/Cas9 genome editing domain screen, we show NPM1mut AML to be exceptionally dependent on the menin binding site in MLL1. Pharmacologic small-molecule inhibition of the menin-MLL1 protein interaction had profound antileukemic activity in human and murine models of NPM1mut AML. Combined pharmacologic inhibition of menin-MLL1 and DOT1L resulted in dramatic suppression of HOX and FLT3 expression, induction of differentiation, and superior activity against NPM1mut leukemia. SIGNIFICANCE: MLL1 and DOT1L are chromatin regulators that control HOX, MEIS1, and FLT3 expression and are therapeutic targets in NPM1mut AML. Combinatorial small-molecule inhibition has synergistic on-target activity and constitutes a novel therapeutic concept for this common AML subtype. Cancer Discov; 6(10); 1166-81. ©2016 AACR.See related commentary by Hourigan and Aplan, p. 1087This article is highlighted in the In This Issue feature, p. 1069.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Leucemia Mieloide Aguda/metabolismo , Metiltransferases/metabolismo , Mutação , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas Nucleares/genética , Sítios de Ligação , Sistemas CRISPR-Cas , Cromatina/metabolismo , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Proteína Meis1 , Proteínas de Neoplasias/metabolismo , Nucleofosmina , Proteínas Proto-Oncogênicas/metabolismo , Tirosina Quinase 3 Semelhante a fms/metabolismo
13.
Nucleic Acids Res ; 41(Database issue): D987-90, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23193272

RESUMO

The ArrayExpress Archive of Functional Genomics Data (http://www.ebi.ac.uk/arrayexpress) is one of three international functional genomics public data repositories, alongside the Gene Expression Omnibus at NCBI and the DDBJ Omics Archive, supporting peer-reviewed publications. It accepts data generated by sequencing or array-based technologies and currently contains data from almost a million assays, from over 30 000 experiments. The proportion of sequencing-based submissions has grown significantly over the last 2 years and has reached, in 2012, 15% of all new data. All data are available from ArrayExpress in MAGE-TAB format, which allows robust linking to data analysis and visualization tools, including Bioconductor and GenomeSpace. Additionally, R objects, for microarray data, and binary alignment format files, for sequencing data, have been generated for a significant proportion of ArrayExpress data.


Assuntos
Bases de Dados Genéticas , Genômica , Análise em Microsséries , Bases de Dados Genéticas/estatística & dados numéricos , Bases de Dados Genéticas/tendências , Sequenciamento de Nucleotídeos em Larga Escala , Internet , Software , Interface Usuário-Computador
14.
J Cell Biol ; 189(3): 417-24, 2010 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-20439995

RESUMO

Lymphatic dysfunction causes several human diseases, and tumor lymphangiogenesis is implicated in cancer spreading. TBX1 is the major gene for DiGeorge syndrome, which is associated with multiple congenital anomalies. Mutation of Tbx1 in mice recapitulates the human disease phenotype. In this study, we use molecular, cellular, and genetic approaches to show, unexpectedly, that Tbx1 plays a critical role in lymphatic vessel development and regulates the expression of Vegfr3, a gene that is essential for lymphangiogenesis. Tbx1 activates Vegfr3 transcription in endothelial cells (ECs) by binding to an enhancer element in the Vegfr3 gene. Conditional deletion of Tbx1 in ECs causes widespread lymphangiogenesis defects in mouse embryos and perinatal death. Using the mesentery as a model tissue, we show that Tbx1 is not required for lymphatic EC differentiation; rather, it is required for the growth and maintenance of lymphatic vessels. Our findings reveal a novel pathway for the development of the lymphatic vessel network.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Linfangiogênese/genética , Vasos Linfáticos/embriologia , Proteínas com Domínio T/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Diferenciação Celular , Células Cultivadas , Embrião de Mamíferos/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Camundongos , Proteínas com Domínio T/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Biochem Pharmacol ; 80(5): 674-82, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20302848

RESUMO

A recent and innovative strategy in cancer therapy is the activation of apoptosis in tumour cells specifically expressing death receptors (DR) belonging to the tumour necrosis factor (TNF) receptor superfamily and including several members known since the early '90. Among these, those largely studied for clinical purpose are TNF, CD95, and TRAIL receptors. Promising results are expecting from ongoing phases I/II clinical trials proving the therapeutic efficacy of DR agonistic antibodies and/or recombinant proteins alone or in association to classic and novel chemotherapeutic drugs. However, two key issues need extensive studies, before clinical and safe applications of DRs as effective anticancer drugs can be accepted: i. DR-based cancer therapy must be selective and effective against a broad range of cancers and reduce excessive systemic toxicity toward normal cells and tumour resistance after recurrent treatments; ii. an improved knowledge of mechanisms of alternative signalling triggered by DR ligands and leading to cell survival and apoptotic resistance. Activation of survival pathways regulated by key factors, such as NF-kappaB, JNK, p38, ERK and PI(3)K are the focus of several studies revealing the dark side of DR signalling. The present review focuses on new insights in the signalling and clinical application of TNF, CD95 and TRAIL receptors.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Receptores de Morte Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Humanos
16.
Proc Natl Acad Sci U S A ; 103(20): 7729-34, 2006 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-16684884

RESUMO

About 35% of patients with 22q11 deletion syndrome (22q11DS), which includes DiGeorge and velocardiofacial syndromes, develops psychiatric disorders, mainly schizophrenia and bipolar disorder. We previously reported that mice carrying a multigene deletion (Df1) that models 22q11DS have reduced prepulse inhibition (PPI), a behavioral abnormality and schizophrenia endophenotype. Impaired PPI is associated with several psychiatric disorders, including those that occur in 22q11DS, and recently, reduced PPI was reported in children with 22q11DS. Here, we have mapped PPI deficits in a panel of mouse mutants that carry deletions that partially overlap with Df1 and have defined a PPI critical region encompassing four genes. We then used single-gene mutants to identify the causative genes. We show that PPI deficits in Df1/+ mice are caused by haploinsufficiency of two genes, Tbx1 and Gnb1l. Mutation of either gene is sufficient to cause reduced PPI. Tbx1 is a transcription factor, the mutation of which is sufficient to cause most of the physical features of 22q11DS, but the gene had not been previously associated with the behavioral/psychiatric phenotype. A likely role for Tbx1 haploinsufficiency in psychiatric disease is further suggested by the identification of a family in which the phenotypic features of 22q11DS, including psychiatric disorders, segregate with an inactivating mutation of TBX1. One family member has Asperger syndrome, an autistic spectrum disorder that is associated with reduced PPI. Thus, Tbx1 and Gnb1l are strong candidates for psychiatric disease in 22q11DS patients and candidate susceptibility genes for psychiatric disease in the wider population.


Assuntos
Síndrome de DiGeorge/genética , Transtornos Mentais/genética , Proteínas com Domínio T , Adulto , Animais , Comportamento Animal/fisiologia , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Criança , Análise Mutacional de DNA , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mutação , Linhagem , Fenótipo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo
17.
Dev Biol ; 295(2): 559-70, 2006 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16696966

RESUMO

Fgf8 and Tbx1 have been shown to interact in patterning the aortic arch, and both genes are required in formation and growth of the outflow tract of the heart. However, the nature of the interaction of the two genes is unclear. We have utilized a novel Tbx1(Fgf8) allele which drives Fgf8 expression in Tbx1-positive cells and an inducible Cre-LoxP recombination system to address the role of Fgf8 in Tbx1 positive cells in modulating cardiovascular development. Results support a requirement of Fgf8 in Tbx1 expressing cells to finely control patterning of the aortic arch and great arteries specifically during the pharyngeal arch artery remodeling process and indicate that the endoderm is the most likely site of this interaction. Furthermore, our data suggest that Fgf8 and Tbx1 play independent roles in regulating outflow tract development. This finding is clinically relevant since TBX1 is the candidate for DGS/VCFS, characterized clinically by variable expressivity and reduced penetrance of cardiovascular defects; Fgf8 gene variants may provide molecular clues to this variability.


Assuntos
Aorta Torácica/anormalidades , Osso e Ossos/anormalidades , Fator 8 de Crescimento de Fibroblasto/genética , Regulação da Expressão Gênica no Desenvolvimento , Mutação , Proteínas com Domínio T/genética , Animais , Padronização Corporal , Região Branquial , Sistema Cardiovascular/crescimento & desenvolvimento , Endoderma , Camundongos , Camundongos Mutantes , Fenótipo
18.
J Biol Chem ; 279(31): 33012-23, 2004 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-15159401

RESUMO

The ubiquitous and pleiotropic dual specificity protein kinase CK2 has been studied and characterized in many organisms, from yeast to mammals. Generally, the enzyme is composed of two catalytic (alpha and/or alpha') and two regulatory (beta) subunits, forming a differently assembled tetramer. Although prone to controversial interpretation, the function of CK2 has been associated with fundamental biological processes such as signal transduction, cell cycle progression, cell growth, apoptosis, and transcription. Less known is the role of CK2 during meiosis and the early phase of embryogenesis. In this work, we studied CK2 activity during oocyte activation, a process occurring at the end of oocyte maturation and triggered by fertilization. In ascidian Ciona intestinalis, an organism whose complete genome has been published recently, CK2 was constitutively active in unfertilized and fertilized oocytes. The enzymatic activity oscillated through meiosis showing three major peaks: soon after fertilization (metaphase I exit), before metaphase II, and at the exit from metaphase II. Biochemical analysis of CK2 subunit composition in activated oocytes indicated that CK2-alpha was catalytically active as a monomer, independently from its regulatory subunit beta; however, CK2-beta was only detectable in unfertilized oocytes where it was associated with a bona fide identified ascidian mitogen-activated protein kinase. After fertilization, CK2-beta was undetectable, suggesting its rapid degradation. Protein sequence analysis of CK2-alpha and -beta cDNA indicated a high identity compared with vertebrate homologs. In addition, the absence of putative phosphorylation sites for Cdc2 kinase on both alpha and beta subunits suggested an important role for CK2 in regulating meiotic cell cycle in C. intestinalis oocytes.


Assuntos
Ciona intestinalis/metabolismo , Oócitos/metabolismo , Proteínas Serina-Treonina Quinases/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Caseína Quinase II , Catálise , Domínio Catalítico , Cromatografia em Gel , Clonagem Molecular , Primers do DNA/química , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Fertilização , Humanos , Immunoblotting , Sistema de Sinalização das MAP Quinases , Meiose , Metáfase , Dados de Sequência Molecular , Fosforilação , Testes de Precipitina , Conformação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Serina/química , Fatores de Tempo
19.
Oncogene ; 22(21): 3330-42, 2003 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-12761503

RESUMO

We previously demonstrated that quercetin, a naturally occurring flavonoid with strong antioxidant properties, was able to enhance programmed cell death in HPB-acute lymphoblastic leukemia (ALL) cell line, derived from a human tymoma, when associated with the agonistic anti-CD95 monoclonal antibody. Here, we report that HPB-ALL cells are normally resistant to CD95-mediated apoptosis, and quercetin is able to sensitize this cell line through a mechanism independent of its antioxidant properties. In fact, other compounds structurally and functionally similar to quercetin, when associated with anti-CD95 antibody did not induce any CD95-mediated apoptosis, still maintaining their antioxidant capacity. We found that quercetin effects are mediated by the activation of PKCalpha. Treatment of HPB-ALL cells with quercetin slightly decreased PKCalpha activity, but when the flavonoid was associated with anti-CD95, the kinase activity increased by 12-fold with respect to the treatment with quercetin. In addition, overexpression of PKCalpha induced programmed cell death in the absence of any additional stimulus, while a kinase-defective mutant of PKCalpha was ineffective. Our data confirm the involvement of specific PKC isoforms in CD95 signaling and suggest, for the first time, that quercetin targets this pathway increasing apoptogenic response in a cell line resistant to CD95-mediated apoptosis.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimologia , Proteína Quinase C/metabolismo , Quercetina/farmacologia , Receptor fas/metabolismo , Anticorpos Monoclonais/farmacologia , Antioxidantes/farmacologia , Caspases/metabolismo , Ativação Enzimática , Humanos , Células Jurkat , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Proteína Quinase C-alfa , Células Tumorais Cultivadas , Receptor fas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...