Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Elife ; 122023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37266576

RESUMO

Polycomb repressive complex (PRC) 1 regulates stem cell fate by mediating mono-ubiquitination of histone H2A at lysine 119. While canonical PRC1 is critical for hematopoietic stem and progenitor cell (HSPC) maintenance, the role of non-canonical PRC1 in hematopoiesis remains elusive. PRC1.1, a non-canonical PRC1, consists of PCGF1, RING1B, KDM2B, and BCOR. We recently showed that PRC1.1 insufficiency induced by the loss of PCGF1 or BCOR causes myeloid-biased hematopoiesis and promotes transformation of hematopoietic cells in mice. Here we show that PRC1.1 serves as an epigenetic switch that coordinates homeostatic and emergency hematopoiesis. PRC1.1 maintains balanced output of steady-state hematopoiesis by restricting C/EBPα-dependent precocious myeloid differentiation of HSPCs and the HOXA9- and ß-catenin-driven self-renewing network in myeloid progenitors. Upon regeneration, PRC1.1 is transiently inhibited to facilitate formation of granulocyte-macrophage progenitor (GMP) clusters, thereby promoting emergency myelopoiesis. Moreover, constitutive inactivation of PRC1.1 results in unchecked expansion of GMPs and eventual transformation. Collectively, our results define PRC1.1 as a novel critical regulator of emergency myelopoiesis, dysregulation of which leads to myeloid transformation.


Assuntos
Mielopoese , Complexo Repressor Polycomb 1 , Animais , Camundongos , Complexo Repressor Polycomb 1/metabolismo , Mielopoese/genética , Histonas , Diferenciação Celular/fisiologia , Células-Tronco Hematopoéticas/metabolismo
3.
Leukemia ; 37(9): 1895-1907, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37198323

RESUMO

UTX/KDM6A, a histone H3K27 demethylase and a key component of the COMPASS complex, is frequently lost or mutated in cancer; however, its tumor suppressor function remains largely uncharacterized in multiple myeloma (MM). Here, we show that the conditional deletion of the X-linked Utx in germinal center (GC) derived cells collaborates with the activating BrafV600E mutation and promotes induction of lethal GC/post-GC B cell malignancies with MM-like plasma cell neoplasms being the most frequent. Mice that developed MM-like neoplasms showed expansion of clonal plasma cells in the bone marrow and extramedullary organs, serum M proteins, and anemia. Add-back of either wild-type UTX or a series of mutants revealed that cIDR domain, that forms phase-separated liquid condensates, is largely responsible for the catalytic activity-independent tumor suppressor function of UTX in MM cells. Utx loss in concert with BrafV600E only slightly induced MM-like profiles of transcriptome, chromatin accessibility, and H3K27 acetylation, however, it allowed plasma cells to gradually undergo full transformation through activation of transcriptional networks specific to MM that induce high levels of Myc expression. Our results reveal a tumor suppressor function of UTX in MM and implicate its insufficiency in the transcriptional reprogramming of plasma cells in the pathogenesis of MM.


Assuntos
Mieloma Múltiplo , Animais , Camundongos , Linfócitos B/metabolismo , Genes Supressores de Tumor , Centro Germinativo/metabolismo , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Mieloma Múltiplo/genética , Proteínas Proto-Oncogênicas B-raf/genética
4.
Cancer Immunol Immunother ; 72(8): 2635-2648, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37069353

RESUMO

Dysfunctional anti-tumor immunity has been implicated in the pathogenesis of mature B cell neoplasms, such as multiple myeloma and B cell lymphoma; however, the impact of exhausted T cells on disease development remains unclear. Therefore, the present study investigated the features and pathogenetic significance of exhausted T cells using a mouse model of de novo mature B cell neoplasms, which is likely to show immune escape similar to human patients. The results revealed a significant increase in PD-1+ Tim-3- and PD-1+ Tim-3+ T cells in sick mice. Furthermore, PD-1+ Tim-3+ T cells exhibited direct cytotoxicity with a short lifespan, showing transcriptional similarities to terminally exhausted T cells. On the other hand, PD-1+ Tim-3- T cells not only exhibited immunological responsiveness but also retained stem-like transcriptional features, suggesting that they play a role in the long-term maintenance of anti-tumor immunity. In PD-1+ Tim-3- and PD-1+ Tim-3+ T cells, the transcription factors Tox and Nr4a2, which reportedly contribute to the progression of T cell exhaustion, were up-regulated in vivo. These transcription factors were down-regulated by IMiDs in our in vitro T cell exhaustion analyses. The prevention of excessive T cell exhaustion may maintain effective anti-tumor immunity to cure mature B cell neoplasms.


Assuntos
Linfoma de Células B , Mieloma Múltiplo , Animais , Humanos , Receptor Celular 2 do Vírus da Hepatite A , Linfócitos T CD8-Positivos , Receptor de Morte Celular Programada 1 , Modelos Animais de Doenças , Fatores de Transcrição
5.
Nat Commun ; 13(1): 7159, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443290

RESUMO

Polycomb group proteins (PcG), polycomb repressive complexes 1 and 2 (PRC1 and 2), repress lineage inappropriate genes during development to maintain proper cellular identities. It has been recognized that PRC1 localizes at the replication fork, however, the precise functions of PRC1 during DNA replication are elusive. Here, we reveal that a variant PRC1 containing PCGF1 (PCGF1-PRC1) prevents overloading of activators and chromatin remodeling factors on nascent DNA and thereby mediates proper deposition of nucleosomes and correct downstream chromatin configurations in hematopoietic stem and progenitor cells (HSPCs). This function of PCGF1-PRC1 in turn facilitates PRC2-mediated repression of target genes such as Hmga2 and restricts premature myeloid differentiation. PCGF1-PRC1, therefore, maintains the differentiation potential of HSPCs by linking proper nucleosome configuration at the replication fork with PcG-mediated gene silencing to ensure life-long hematopoiesis.


Assuntos
Cromatina , Replicação do DNA , Cromatina/genética , Linhagem da Célula/genética , Nucleossomos/genética , Proteínas do Grupo Polycomb , Complexo Repressor Polycomb 2
6.
JCI Insight ; 7(20)2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36129760

RESUMO

POEMS syndrome is a rare monoclonal plasma cell disorder, with unique symptoms distinct from those of other plasma cell neoplasms, including high serum VEGF levels. Because the prospective isolation of POEMS clones has not yet been successful, their real nature remains unclear. Herein, we performed single-cell RNA-Seq of BM plasma cells from patients with POEMS syndrome and identified POEMS clones that had Ig λ light chain (IGL) sequences (IGLV1-36, -40, -44, and -47) with amino acid changes specific to POEMS syndrome. The proportions of POEMS clones in plasma cells were markedly smaller than in patients with multiple myeloma (MM) and patients with monoclonal gammopathy of undetermined significance (MGUS). Single-cell transcriptomes revealed that POEMS clones were CD19+, CD138+, and MHC class IIlo, which allowed for their prospective isolation. POEMS clones expressed significantly lower levels of c-MYC and CCND1 than MM clones, accounting for their small size. VEGF mRNA was not upregulated in POEMS clones, directly indicating that VEGF is not produced by POEMS clones. These results reveal unique features of POEMS clones and enhance our understanding of the pathogenesis of POEMS syndrome.


Assuntos
Mieloma Múltiplo , Síndrome POEMS , Humanos , Síndrome POEMS/diagnóstico , Síndrome POEMS/etiologia , Síndrome POEMS/patologia , Plasmócitos/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Análise de Célula Única , Cadeias lambda de Imunoglobulina/genética , Cadeias lambda de Imunoglobulina/metabolismo , Cadeias Leves de Imunoglobulina/metabolismo , Células Clonais/patologia , Mieloma Múltiplo/patologia , Aminoácidos/metabolismo
7.
Blood ; 140(22): 2358-2370, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35984905

RESUMO

Cancer cell heterogeneity is a major driver of therapy resistance. To characterize resistant cells and their vulnerabilities, we studied the PLZF-RARA variant of acute promyelocytic leukemia, resistant to retinoic acid (RA), using single-cell multiomics. We uncovered transcriptional and chromatin heterogeneity in leukemia cells. We identified a subset of cells resistant to RA with proliferation, DNA replication, and repair signatures that depend on a fine-tuned E2F transcriptional network targeting the epigenetic regulator enhancer of zeste homolog 2 (EZH2). Epigenomic and functional analyses validated the driver role of EZH2 in RA resistance. Targeting pan-EZH2 activities (canonical/noncanonical) was necessary to eliminate leukemia relapse-initiating cells, which underlies a dependency of resistant cells on an EZH2 noncanonical activity and the necessity to degrade EZH2 to overcome resistance. Our study provides critical insights into the mechanisms of RA resistance that allow us to eliminate treatment-resistant leukemia cells by targeting EZH2, thus highlighting a potential targeted therapy approach. Beyond RA resistance and acute promyelocytic leukemia context, our study also demonstrates the power of single-cell multiomics to identify, characterize, and clear therapy-resistant cells.


Assuntos
Leucemia Promielocítica Aguda , Humanos , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Tretinoína/farmacologia , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Receptor alfa de Ácido Retinoico/genética , Receptores do Ácido Retinoico/genética , Fatores de Transcrição/genética , Proteínas Nucleares/genética
8.
Nat Commun ; 13(1): 2691, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35577813

RESUMO

Hematopoietic stem cells (HSCs) exhibit considerable cell-intrinsic changes with age. Here, we present an integrated analysis of transcriptome and chromatin accessibility of aged HSCs and downstream progenitors. Alterations in chromatin accessibility preferentially take place in HSCs with aging, which gradually resolve with differentiation. Differentially open accessible regions (open DARs) in aged HSCs are enriched for enhancers and show enrichment of binding motifs of the STAT, ATF, and CNC family transcription factors that are activated in response to external stresses. Genes linked to open DARs show significantly higher levels of basal expression and their expression reaches significantly higher peaks after cytokine stimulation in aged HSCs than in young HSCs, suggesting that open DARs contribute to augmented transcriptional responses under stress conditions. However, a short-term stress challenge that mimics infection is not sufficient to induce persistent chromatin accessibility changes in young HSCs. These results indicate that the ongoing and/or history of exposure to external stresses may be epigenetically inscribed in HSCs to augment their responses to external stimuli.


Assuntos
Cromatina , Células-Tronco Hematopoéticas , Diferenciação Celular/genética , Cromatina/genética , Cromatina/metabolismo , Epigênese Genética , Epigenômica , Células-Tronco Hematopoéticas/metabolismo
9.
Leukemia ; 36(6): 1550-1562, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35418614

RESUMO

The identification of characteristic differences between cancer stem cells and their normal counterparts remains a key challenge for cancer treatment. Here, we investigated the role of immunoglobulin superfamily member 8 (Igsf8, also known as EWI-2, PGRL, and CD316) on normal and malignant hematopoietic stem cells, mainly using the conditional knockout model. Deletion of Igsf8 did not affect steady state hematopoiesis, but it led to a significant improvement of survival in mouse myeloid leukemia models. Deletion of Igsf8 significantly depletes leukemia stem cells (LSCs) through enhanced apoptosis and ß-catenin degradation. At a molecular level, we found that activation of ß-catenin in LSCs depends on Igsf8, which promotes the association of FZD4 with its co-receptor LRP6 in the presence of Igsf8. Similarly, IGSF8 inhibition blocks the colony-forming ability of LSCs and improves the survival of recipients in xenograft models of myeloid leukemia. Collectively, these data indicate strong genetic evidence identifying Igsf8 as a key regulator of myeloid leukemia and the possibility that targeting IGSF8 may serve as a new therapeutic approach against myeloid leukemia.


Assuntos
Proteínas de Transporte/metabolismo , Leucemia Mieloide Aguda , Proteínas de Membrana/metabolismo , beta Catenina/metabolismo , Animais , Receptores Frizzled/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Imunoglobulinas , Leucemia Mieloide Aguda/metabolismo , Camundongos , Células-Tronco Neoplásicas/patologia , Fatores de Transcrição/metabolismo , beta Catenina/genética
10.
Leukemia ; 36(2): 452-463, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34497325

RESUMO

Insufficiency of polycomb repressive complex 2 (PRC2), which trimethylates histone H3 at lysine 27, is frequently found in primary myelofibrosis and promotes the development of JAK2V617F-induced myelofibrosis in mice by enhancing the production of dysplastic megakaryocytes. Polycomb group ring finger protein 1 (Pcgf1) is a component of PRC1.1, a non-canonical PRC1 that monoubiquitylates H2A at lysine 119 (H2AK119ub1). We herein investigated the impact of PRC1.1 insufficiency on myelofibrosis. The deletion of Pcgf1 in JAK2V617F mice strongly promoted the development of lethal myelofibrosis accompanied by a block in erythroid differentiation. Transcriptome and chromatin immunoprecipitation sequence analyses showed the de-repression of PRC1.1 target genes in Pcgf1-deficient JAK2V617F hematopoietic progenitors and revealed Hoxa cluster genes as direct targets. The deletion of Pcgf1 in JAK2V617F hematopoietic stem and progenitor cells (HSPCs), as well as the overexpression of Hoxa9, restored the attenuated proliferation of JAK2V617F progenitors. The overexpression of Hoxa9 also enhanced JAK2V617F-mediated myelofibrosis. The expression of PRC2 target genes identified in PRC2-insufficient JAK2V617F HSPCs was not largely altered in Pcgf1-deleted JAK2V617F HSPCs. The present results revealed a tumor suppressor function for PRC1.1 in myelofibrosis and suggest that PRC1.1 insufficiency has a different impact from that of PRC2 insufficiency on the pathogenesis of myelofibrosis.


Assuntos
Diferenciação Celular , Janus Quinase 2/genética , Mutação , Complexo Repressor Polycomb 1/fisiologia , Mielofibrose Primária/patologia , Animais , Feminino , Lisina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mielofibrose Primária/etiologia , Mielofibrose Primária/metabolismo , Ubiquitinação
11.
Exp Hematol ; 96: 52-62.e5, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33582241

RESUMO

The bone marrow (BM) microenvironment, known as the BM niche, regulates hematopoiesis but is also affected by interactions with hematopoietic cells. Recent evidence indicates that extracellular matrix components are involved in these interactions. Chondroitin sulfate (CS), a glycosaminoglycan, is a major component of the extracellular matrix; however, it is not known whether CS has a physiological role in hematopoiesis. Here, we analyzed the functions of CS in hematopoietic and niche cells. CSGalNAcT1, which encodes CS N-acetylgalactosaminyltransferase-1 (T1), a key enzyme in CS biosynthesis, was highly expressed in hematopoietic stem and progenitor cells (HSPCs) and endothelial cells (ECs), but not in mesenchymal stromal cells (MSCs) in BM. In T1 knockout (T1KO) mice, a greater number of HSPCs existed compared with the wild-type (WT), but HSPCs from T1KO mice showed significantly impaired repopulation in WT recipient mice on serial transplantation. RNA sequence analysis revealed the activation of IFN-α/ß signaling and endoplasmic reticulum stress in T1KO HSPCs. In contrast, the number of WT HSPCs repopulated in T1KO recipient mice was larger than that in WT recipient mice after serial transplantation, indicating that the T1KO niche supports repopulation of HSPCs better than the WT niche. There was no obvious difference in the distribution of vasculature and MSCs between WT and T1KO BM, suggesting that CS loss alters vascular niche functions without affecting its structure. Our results revealed distinct roles of CS in hematopoietic cells and BM niche, indicating that crosstalk between these components is important to maintain homeostasis in BM.


Assuntos
Sulfatos de Condroitina/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/citologia , Animais , Células da Medula Óssea/citologia , Transplante de Medula Óssea , Células-Tronco Hematopoéticas/metabolismo , Camundongos Endogâmicos C57BL , Nicho de Células-Tronco
12.
Blood Adv ; 5(2): 438-450, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33496740

RESUMO

Dihydroorotate dehydrogenase (DHODH) catalyzes a rate-limiting step in de novo pyrimidine nucleotide synthesis. DHODH inhibition has recently been recognized as a potential new approach for treating acute myeloid leukemia (AML) by inducing differentiation. We investigated the efficacy of PTC299, a novel DHODH inhibitor, for myelodysplastic syndrome (MDS). PTC299 inhibited the proliferation of MDS cell lines, and this was rescued by exogenous uridine, which bypasses de novo pyrimidine synthesis. In contrast to AML cells, PTC299 was inefficient at inhibiting growth and inducing the differentiation of MDS cells, but synergized with hypomethylating agents, such as decitabine, to inhibit the growth of MDS cells. This synergistic effect was confirmed in primary MDS samples. As a single agent, PTC299 prolonged the survival of mice in xenograft models using MDS cell lines, and was more potent in combination with decitabine. Mechanistically, a treatment with PTC299 induced intra-S-phase arrest followed by apoptotic cell death. Of interest, PTC299 enhanced the incorporation of decitabine, an analog of cytidine, into DNA by inhibiting pyrimidine production, thereby enhancing the cytotoxic effects of decitabine. RNA-seq data revealed the marked downregulation of MYC target gene sets with PTC299 exposure. Transfection of MDS cell lines with MYC largely attenuated the growth inhibitory effects of PTC299, suggesting MYC as one of the major targets of PTC299. Our results indicate that the DHODH inhibitor PTC299 suppresses the growth of MDS cells and acts in a synergistic manner with decitabine. This combination therapy may be a new therapeutic option for the treatment of MDS.


Assuntos
Síndromes Mielodisplásicas , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Animais , DNA , Decitabina/farmacologia , Di-Hidro-Orotato Desidrogenase , Camundongos , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética
13.
Sci Rep ; 11(1): 2074, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483574

RESUMO

The novel small molecule PTC596 inhibits microtubule polymerization and its clinical development has been initiated for some solid cancers. We herein investigated the preclinical efficacy of PTC596 alone and in combination with proteasome inhibitors in the treatment of multiple myeloma (MM). PTC596 inhibited the proliferation of MM cell lines as well as primary MM samples in vitro, and this was confirmed with MM cell lines in vivo. PTC596 synergized with bortezomib or carfilzomib to inhibit the growth of MM cells in vitro. The combination treatment of PTC596 with bortezomib exerted synergistic effects in a xenograft model of human MM cell lines in immunodeficient mice and exhibited acceptable tolerability. Mechanistically, treatment with PTC596 induced cell cycle arrest at G2/M phase followed by apoptotic cell death, associated with the inhibition of microtubule polymerization. RNA sequence analysis also revealed that PTC596 and the combination with bortezomib affected the cell cycle and apoptosis in MM cells. Importantly, endoplasmic reticulum stress induced by bortezomib was enhanced by PTC596, providing an underlying mechanism of action of the combination therapy. Our results indicate that PTC596 alone and in combination with proteasome inhibition are potential novel therapeutic options to improve outcomes in patients with MM.


Assuntos
Benzimidazóis/farmacologia , Proliferação de Células/efeitos dos fármacos , Mieloma Múltiplo/patologia , Inibidores de Proteassoma/farmacologia , Pirazinas/farmacologia , Tubulina (Proteína)/metabolismo , Animais , Benzimidazóis/administração & dosagem , Benzimidazóis/metabolismo , Bortezomib/administração & dosagem , Bortezomib/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Quimioterapia Combinada , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Camundongos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Polimerização , Inibidores de Proteassoma/administração & dosagem , Pirazinas/administração & dosagem , Pirazinas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Leukemia ; 35(4): 1156-1165, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32820269

RESUMO

EZH1 and EZH2 are enzymatic components of polycomb repressive complex (PRC) 2, which catalyzes histone H3K27 tri-methylation (H3K27me3) to repress the transcription of PRC2 target genes. We previously reported that the hematopoietic cell-specific Ezh2 deletion (Ezh2Δ/Δ) induced a myelodysplastic syndrome (MDS)-like disease in mice. We herein demonstrated that severe PRC2 insufficiency induced by the deletion of one allele Ezh1 in Ezh2-deficient mice (Ezh1+/-Ezh2Δ/Δ) caused advanced dyserythropoiesis accompanied by a differentiation block and enhanced apoptosis in erythroblasts. p53, which is activated by impaired ribosome biogenesis in del(5q) MDS, was specifically activated in erythroblasts, but not in hematopoietic stem or progenitor cells in Ezh1+/-Ezh2Δ/Δ mice. Cdkn2a, a major PRC2 target encoding p19Arf, which activates p53 by inhibiting MDM2 E3 ubiquitin ligase, was de-repressed in Ezh1+/-Ezh2Δ/Δ erythroblasts. The deletion of Cdkn2a as well as p53 rescued dyserythropoiesis in Ezh1+/-Ezh2Δ/Δ mice, indicating that PRC2 insufficiency caused p53-dependent dyserythropoiesis via the de-repression of Cdkn2a. Since PRC2 insufficiency is often involved in the pathogenesis of MDS, the present results suggest that p53-dependent dyserythropoiesis manifests in MDS in the setting of PRC2 insufficiency.


Assuntos
Suscetibilidade a Doenças , Eritropoese/genética , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Complexo Repressor Polycomb 2/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Biomarcadores , Sequenciamento de Cromatina por Imunoprecipitação , Modelos Animais de Doenças , Eritroblastos/metabolismo , Eritroblastos/patologia , Citometria de Fluxo , Histonas/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Mutação , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/terapia , Ligação Proteica
15.
J Exp Med ; 218(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33231616

RESUMO

Hematopoietic stem cells (HSCs) exhibit functional alterations, such as reduced regenerative capacity and myeloid-biased differentiation, with age. The HSC niche, which is essential for the maintenance of HSCs, also undergoes marked changes with aging. However, it has been technically challenging to directly evaluate the contribution of niche aging to age-associated HSC alterations without niche-damaging myeloablation in HSC transplantation assays. We herein transplanted an excess of aged HSCs into young mice without preconditioning. Although aged HSCs successfully engrafted in the intact young bone marrow niche, they poorly regenerated downstream progenitors and exhibited persistent myeloid-biased differentiation, resulting in no significant functional rejuvenation. Transcriptome and methylome analyses revealed that the young niche largely restored the transcriptional profile of aged HSCs, but not their DNA methylation profiles. Therefore, the restoration of the young niche is insufficient for rejuvenating HSC functions, highlighting a key role for age-associated cell-intrinsic defects in HSC aging.


Assuntos
Medula Óssea/metabolismo , Senescência Celular , Células-Tronco Hematopoéticas/citologia , Rejuvenescimento , Nicho de Células-Tronco , Envelhecimento/fisiologia , Animais , Metilação de DNA/genética , Hematopoese , Camundongos Endogâmicos C57BL , Transcrição Gênica , Transcriptoma/genética
16.
Cancer Sci ; 111(12): 4336-4347, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33037737

RESUMO

Monomer tubulin polymerize into microtubules, which are highly dynamic and play a critical role in mitosis. Therefore, microtubule dynamics are an important target for anticancer drugs. The inhibition of tubulin polymerization or depolymerization was previously targeted and exhibited efficacy against solid tumors. The novel small molecule PTC596 directly binds tubulin, inhibits microtubule polymerization, downregulates MCL-1, and induces p53-independent apoptosis in acute myeloid leukemia cells. We herein investigated the efficacy of PTC-028, a structural analog of PTC596, for myelodysplastic syndrome (MDS). PTC-028 suppressed growth and induced apoptosis in MDS cell lines. The efficacy of PTC028 in primary MDS samples was confirmed using cell proliferation assays. PTC-028 synergized with hypomethylating agents, such as decitabine and azacitidine, to inhibit growth and induce apoptosis in MDS cells. Mechanistically, a treatment with PTC-028 induced G2/M arrest followed by apoptotic cell death. We also assessed the efficacy of PTC-028 in a xenograft mouse model of MDS using the MDS cell line, MDS-L, and the AkaBLI bioluminescence imaging system, which is composed of AkaLumine-HCl and Akaluc. PTC-028 prolonged the survival of mice in xenograft models. The present results suggest a chemotherapeutic strategy for MDS through the disruption of microtubule dynamics in combination with DNA hypomethylating agents.


Assuntos
Benzimidazóis/farmacologia , Síndromes Mielodisplásicas/tratamento farmacológico , Pirazinas/farmacologia , Moduladores de Tubulina/farmacologia , Animais , Antimetabólitos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Benzimidazóis/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Decitabina/farmacologia , Fase G2/efeitos dos fármacos , Células HL-60 , Xenoenxertos , Humanos , Camundongos , Síndromes Mielodisplásicas/genética , Paclitaxel/farmacologia , Pirazinas/uso terapêutico , Análise de Sequência de RNA/métodos , Tubulina (Proteína)/efeitos dos fármacos , Moduladores de Tubulina/uso terapêutico , Vincristina/farmacologia
17.
Blood Adv ; 4(5): 845-854, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32126143

RESUMO

Loss-of-function mutations in ten-eleven translocation-2 (TET2) are recurrent events in acute myeloid leukemia (AML) as well as in preleukemic hematopoietic stem cells (HSCs) of age-related clonal hematopoiesis. TET3 mutations are infrequent in AML, but the level of TET3 expression in HSCs has been found to decline with age. We examined the impact of gradual decrease of TET function in AML development by generating mice with Tet deficiency at various degrees. Tet2f/f and Tet3f/f mice were crossed with mice expressing Mx1-Cre to generate Tet2f/wtTet3f/fMx-Cre+ (T2ΔT3), Tet2f/fTet3f/wtMx-Cre+ (ΔT2T3), and Tet2f/fTet3f/fMx-Cre+ (ΔT2ΔT3) mice. All ΔT2ΔT3 mice died of aggressive AML at a median survival of 10.7 weeks. By comparison, T2ΔT3 and ΔT2T3 mice developed AML at longer latencies, with a median survival of ∼27 weeks. Remarkably, all 9 T2ΔT3 and 8 ΔT2T3 mice with AML showed inactivation of the remaining nontargeted Tet2 or Tet3 allele, respectively, owing to exonic loss in either gene or stop-gain mutations in Tet3. Recurrent mutations other than Tet3 were not noted in any mice by whole-exome sequencing. Spontaneous inactivation of residual Tet2 or Tet3 alleles is a recurrent genetic event during the development of AML with Tet insufficiency.


Assuntos
Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas , Animais , Proteínas de Ligação a DNA/genética , Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda/genética , Camundongos , Mutação , Proteínas Proto-Oncogênicas/genética
18.
Cancer Sci ; 110(12): 3695-3707, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31571328

RESUMO

Polycomb repressive complex 2 (PRC2) components, EZH2 and its homolog EZH1, and PI3K/Akt signaling pathway are focal points as therapeutic targets for multiple myeloma. However, the exact crosstalk between their downstream targets remains unclear. We herein elucidated some epigenetic interactions following Akt inhibition and demonstrated the efficacy of the combined inhibition of Akt and PRC2. We found that TAS-117, a potent and selective Akt inhibitor, downregulated EZH2 expression at the mRNA and protein levels via interference with the Rb-E2F pathway, while EZH1 was compensatively upregulated to maintain H3K27me3 modifications. Consistent with these results, the dual EZH2/EZH1 inhibitor, UNC1999, but not the selective EZH2 inhibitor, GSK126, synergistically enhanced TAS-117-induced cytotoxicity and provoked myeloma cell apoptosis. RNA-seq analysis revealed the activation of the FOXO signaling pathway after TAS-117 treatment. FOXO3/4 mRNA and their downstream targets were upregulated with the enhanced nuclear localization of FOXO3 protein after TAS-117 treatment. ChIP assays confirmed the direct binding of FOXO3 to EZH1 promoter, which was enhanced by TAS-117 treatment. Moreover, FOXO3 knockdown repressed EZH1 expression. Collectively, the present results reveal some molecular interactions between Akt signaling and epigenetic modulators, which emphasize the benefits of targeting PRC2 full activity and the Akt pathway as a therapeutic option for multiple myeloma.


Assuntos
Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Complexo Repressor Polycomb 2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Sinergismo Farmacológico , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/fisiologia , Proteína Forkhead Box O3/fisiologia , Humanos , Mieloma Múltiplo/patologia , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/fisiologia , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/fisiologia , Piridonas/uso terapêutico
19.
Blood Adv ; 3(17): 2537-2549, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31471323

RESUMO

KDM2B together with RING1B, PCGF1, and BCOR or BCORL1 comprise polycomb repressive complex 1.1 (PRC1.1), a noncanonical PRC1 that catalyzes H2AK119ub1. It binds to nonmethylated CpG islands through its zinc finger-CxxC DNA binding domain and recruits the complex to target gene loci. Recent studies identified the loss of function mutations in the PRC1.1 gene, BCOR and BCORL1 in human T-cell acute lymphoblastic leukemia (T-ALL). We previously reported that Bcor insufficiency induces T-ALL in mice, supporting a tumor suppressor role for BCOR. However, the function of BCOR responsible for tumor suppression, either its corepressor function for BCL6 or that as a component of PRC1.1, remains unclear. We herein examined mice specifically lacking the zinc finger-CxxC domain of KDM2B in hematopoietic cells. Similar to Bcor-deficient mice, Kdm2b-deficient mice developed lethal T-ALL mostly in a NOTCH1-dependent manner. A chromatin immunoprecipitation sequence analysis of thymocytes revealed the binding of KDM2B at promoter regions, at which BCOR and EZH2 colocalized. KDM2B target genes markedly overlapped with those of NOTCH1 in human T-ALL cells, suggesting that noncanonical PRC1.1 antagonizes NOTCH1-mediated gene activation. KDM2B target genes were expressed at higher levels than the others and were marked with high levels of H2AK119ub1 and H3K4me3, but low levels of H3K27me3, suggesting that KDM2B target genes are transcriptionally active or primed for activation. These results indicate that PRC1.1 plays a key role in restricting excessive transcriptional activation by active NOTCH1, thereby acting as a tumor suppressor in the initiation of T-cell leukemogenesis.


Assuntos
Carcinogênese/química , Proteínas F-Box/fisiologia , Histona Desmetilases com o Domínio Jumonji/fisiologia , Leucemia de Células T/etiologia , Complexo Repressor Polycomb 1/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Ilhas de CpG , Proteínas F-Box/metabolismo , Histonas , Humanos , Histona Desmetilases com o Domínio Jumonji/deficiência , Histona Desmetilases com o Domínio Jumonji/metabolismo , Camundongos , Mutação , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Domínios Proteicos , Receptor Notch1/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ativação Transcricional , Dedos de Zinco
20.
Blood ; 133(23): 2495-2506, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-30917958

RESUMO

Recurrent inactivating mutations have been identified in the X-linked plant homeodomain finger protein 6 (PHF6) gene, encoding a chromatin-binding transcriptional regulator protein, in various hematological malignancies. However, the role of PHF6 in normal hematopoiesis and its tumor-suppressor function remain largely unknown. We herein generated mice carrying a floxed Phf6 allele and inactivated Phf6 in hematopoietic cells at various developmental stages. The Phf6 deletion in embryos augmented the capacity of hematopoietic stem cells (HSCs) to proliferate in cultures and reconstitute hematopoiesis in recipient mice. The Phf6 deletion in neonates and adults revealed that cycling HSCs readily acquired an advantage in competitive repopulation upon the Phf6 deletion, whereas dormant HSCs only did so after serial transplantations. Phf6-deficient HSCs maintained an enhanced repopulating capacity during serial transplantations; however, they did not induce any hematological malignancies. Mechanistically, Phf6 directly and indirectly activated downstream effectors in tumor necrosis factor α (TNFα) signaling. The Phf6 deletion repressed the expression of a set of genes associated with TNFα signaling, thereby conferring resistance against the TNFα-mediated growth inhibition on HSCs. Collectively, these results not only define Phf6 as a novel negative regulator of HSC self-renewal, implicating inactivating PHF6 mutations in the pathogenesis of hematological malignancies, but also indicate that a Phf6 deficiency alone is not sufficient to induce hematopoietic transformation.


Assuntos
Autorrenovação Celular , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Proteínas Repressoras/metabolismo , Animais , Proliferação de Células/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...