Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569960

RESUMO

This paper presents research on the degradation processes of the fresco painting in the cave church of Corbii de Piatra Hermitage under the influence of meteoric infiltration water and environmental factors. The medieval fresco dates from the end of the 13th century and the beginning of the 14th century, being painted on a sandstone wall. The infiltration of meteoric water through this wall, the temperature variations, the environment and the repeated wetting/drying processes determined the degradation of the fresco, resulting in its detachment from large surfaces. This research established correlations between the processes that take place, the structural transformations, the changes in composition and the adhesion of the fresco to the sandstone wall. The results have been made available to conservation and restoration specialists, in order to choose appropriate materials and technologies. This paper presents findings regarding the pictorial material and introduces new analysis techniques in research on the degradation processes of the fresco painting in the cave church of Corbii de Piatra Hermitage under the influence of meteoric infiltration water and environmental factors.

2.
Materials (Basel) ; 14(16)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34443109

RESUMO

The fuel cladding is one of the most important structural components for maintaining the integrity of a fuel channel and for safely exploitation of a nuclear power plant. The corrosion behavior of a fuel cladding material, Zy-4, under high pressure and temperatures conditions, was analyzed in a static isothermal autoclave under simulated primary water conditions-a LiOH solution at 310 °C and 10 MPa for up to 3024 h. After this, the oxides grown on the Zy-4 sample surface were characterized using electrochemical measurements, gravimetric analysis, metallographic analysis, SEM and XPS. The maximum oxide thicknesses evaluated by gravimetric and SEM measurements were in good agreement; both values were around 1.2 µm. The optical light microscopy (OLM) investigations identified the presence of small hydrides uniformly distributed horizontally across the alloy. EIS impedance spectra showed an increase in the oxide impedance for the samples oxidized for a long time. EIS plots has the best fit with an equivalent circuit which illustrated an oxide model that has two oxide layers: an inner oxide layer and outer layer. The EIS results showed that the inner layer was a barrier layer, and the outer layer was a porous layer. Potentiodynamic polarization results demonstrated superior corrosion resistance of the samples tested for longer periods of time. By XPS measurements we identified all five oxidation states of zirconium: Zr0 located at 178.5 eV; Zr4+ at 182.8 eV; and the three suboxides, Zr+, Zr2+ and Zr3+ at 179.7, 180.8 and 181.8 eV, respectively. The determination of Vickers microhardness completed the investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...