Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 570: 118633, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31437563

RESUMO

Avobenzone (AVO), oxybenzone (OXY), and octyl methoxycinnamate (OMC), are widely used UV filters. The aim of this study was to investigate the effect of incorporation in mesoporous silica (SBA-15) on their cutaneous deposition and permeation. Stick formulations containing "free" and "incorporated" UV filters (SF1 and SF2, respectively) were prepared and characterized with respect to their physicochemical, thermal, and functional properties. Cutaneous delivery experiments using porcine skin with quantification by UHPLC-MS/MS, demonstrated that skin deposition of AVO and OXY after application of SF2 for 6 and 12 h was significantly lower than that from SF1 at each time-point (Student t-test, p < 0.05): e.g. OXY permeation across the skin was 30-, 12- and 1.5-fold lower after 6, 12 and 24 h, respectively, following application of SF2. Cutaneous biodistribution profiles of AVO and OXY to 800 µm evidenced a significant decrease in the amounts in the viable epidermis and dermis. In contrast, deposition of the more lipophilic OMC was not significantly different (p ˃ 0.05). In vitro photoprotective efficacy results demonstrated that adsorption/entrapment of UV filters enhanced the sun protection factor by 94%. In conclusion, SBA-15, an innovative mesoporous material, increased photoprotection by UV filters while reducing their cutaneous penetration and transdermal permeation.


Assuntos
Derme/metabolismo , Epiderme/metabolismo , Dióxido de Silício/sangue , Absorção Cutânea/efeitos dos fármacos , Raios Ultravioleta/efeitos adversos , Administração Cutânea , Animais , Benzofenonas/química , Cromatografia Líquida de Alta Pressão/métodos , Cinamatos/química , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Estabilidade de Medicamentos , Propiofenonas/química , Dióxido de Silício/química , Fator de Proteção Solar/métodos , Protetores Solares/administração & dosagem , Protetores Solares/química , Suínos , Espectrometria de Massas em Tandem/métodos , Distribuição Tecidual/fisiologia
2.
Nanomedicine ; 12(8): 2241-2250, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27339784

RESUMO

Due to its physicochemical properties, nanostructured mesoporous SBA-15 silica shows great potential as a vaccine adjuvant. This study evaluated the capacity of SBA-15 to encapsulate/adsorb the recombinant purified HBsAg from the Hepatitis B virus and the immunoresponsiveness of mice orally immunized with HBsAg inside SBA-15. A simulation of small angle X-ray scattering experimental results, together with the nitrogen adsorption isotherms data, allowed to determine the appropriate mass ratio of HBsAg:SBA-15, indicating antigen encapsulation into SBA-15 macroporosity. This was also evaluated by bicinchoninic acid assay and gel electrophoresis. The recruitment of inflammatory cells, an increase in production of specific antibodies, and the non-influence of silica on TH1 or TH2 polarization were observed after oral immunization. Besides, SBA-15 enhanced the phagocytosis of ovalbumin by dendritic cells, an important key to prove how this adjuvant works. Thus, it seems clear that the nanostructured SBA-15 is an effective and safe adjuvant for oral immunizations.


Assuntos
Vacinas contra Hepatite B/administração & dosagem , Imunização/métodos , Dióxido de Silício , Animais , Antígenos de Superfície da Hepatite B , Camundongos , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...