Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 20(10): 4196-4204, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38713513

RESUMO

We extend our recently developed sparse-stochastic fragmented exchange formalism for ground-state near-gap hybrid DFT to calculate absorption spectra within linear-response time-dependent generalized Kohn-Sham DFT (LR-GKS-TDDFT) for systems consisting of thousands of valence electrons within a grid-based/plane-wave representation. A mixed deterministic/fragmented-stochastic compression of the exchange kernel, here using long-range explicit exchange functionals, provides an efficient method for accurate optical spectra. Both real-time propagation as well as frequency-resolved Casida-equation-type approaches for spectra are presented, and the method is applied to large molecular dyes.

2.
J Chem Phys ; 160(14)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38587220

RESUMO

The projector augmented wave (PAW) method of Blöchl linearly maps smooth pseudo wavefunctions to the highly oscillatory all-electron DFT orbitals. Compared to norm-conserving pseudopotentials (NCPP), PAW has the advantage of lower kinetic energy cutoffs and larger grid spacing at the cost of having to solve for non-orthogonal wavefunctions. We earlier developed orthogonal PAW (OPAW) to allow the use of PAW when orthogonal wavefunctions are required. In OPAW, the pseudo wavefunctions are transformed through the efficient application of powers of the PAW overlap operator with essentially no extra cost compared to NCPP methods. Previously, we applied OPAW to DFT. Here, we take the first step to make OPAW viable for post-DFT methods by implementing it in real-time time-dependent (TD) DFT. Using fourth-order Runge-Kutta for the time-propagation, we compare calculations of absorption spectra for various organic and biological molecules and show that very large grid spacings are sufficient, 0.6-0.7 bohr in OPAW-TDDFT rather than the 0.4-0.5 bohr used in traditional NCPP-TDDFT calculations. This reduces the memory and propagation costs by around a factor of 3. Our method would be directly applicable to any post-DFT methods that require time-dependent propagations such as the GW approximation and the Bethe-Salpeter equation.

3.
J Chem Theory Comput ; 19(24): 9239-9247, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38051791

RESUMO

We develop an efficient approach to evaluate range-separated exact exchange for grid- or plane-wave-based representations within the generalized Kohn-Sham-density functional theory (GKS-DFT) framework. The Coulomb kernel is fragmented in reciprocal space, and we employ a mixed deterministic-stochastic representation, retaining long-wavelength (low-k) contributions deterministically and using a sparse ("fragmented") stochastic basis for the high-k part. Coupled with a projection of the Hamiltonian onto a subspace of valence and conduction states from a prior local-DFT calculation, this method allows for the calculation of the long-range exchange of large molecular systems with hundreds and potentially thousands of coupled valence states delocalized over millions of grid points. We find that even a small number of valence and conduction states is sufficient for converging the HOMO and LUMO energies of the GKS-DFT. Excellent tuning of long-range separated hybrids (RSH) is easily obtained in the method for very large systems, as exemplified here for the chlorophyll hexamer of Photosystem II with 1320 electrons.

4.
J Chem Phys ; 158(15)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37094001

RESUMO

We develop an improved stochastic formalism for the Bethe-Salpeter equation (BSE), based on an exact separation of the effective-interaction W into two parts, W = (W - vW) + vW, where the latter is formally any translationally invariant interaction, vW(r - r'). When optimizing the fit of the exchange kernel vW to W, using a stochastic sampling W, the difference W - vW becomes quite small. Then, in the main BSE routine, this small difference is stochastically sampled. The number of stochastic samples needed for an accurate spectrum is then largely independent of system size. While the method is formally cubic in scaling, the scaling prefactor is small due to the constant number of stochastic orbitals needed for sampling W.

5.
Nanoscale ; 15(8): 3841-3849, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36734651

RESUMO

Excitonic chromophore aggregates have wide-ranging applicability in fields such as imaging and energy harvesting; however their rational design requires adapting principles of self-assembly to the requirements of excited state coupling. Using the well-studied amphiphilic cyanine dye C8S3 as a template-known to assemble into tubular excitonic aggregates-we synthesize several redshifted variants and study their self-assembly and photophysics. The new pentamethine dyes retain their tubular self-assembly and demonstrate nearly identical bathochromic shifts and lineshapes well into near-infrared wavelengths. However, detailed photophysical analysis finds that the new aggregates show a significant decline in superradiance. Additionally, cryo-TEM reveals that these aggregates readily form short bundles of nanotubes that have nearly half the radii of their trimethine comparators. We employ computational screening to gain intuition on how the structural components of these new aggregates affect their excitonic states, finding that the narrower tubes are able to assemble into a larger number of arrangements, resulting in more disordered aggregates (i.e. less superradiant) with highly similar degrees of redshift.

6.
J Chem Phys ; 157(3): 031104, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35868930

RESUMO

We present a highly efficient method for the extraction of optical properties of very large molecules via the Bethe-Salpeter equation. The crutch of this approach is the calculation of the action of the effective Coulombic interaction, W, through a stochastic time-dependent Hartree propagation, which uses only ten stochastic orbitals rather than propagating the full sea of occupied states. This leads to a scaling that is at most cubic in system size with trivial parallelization of the calculation. We apply this new method to calculate the spectra and electronic density of the dominant excitons of a carbon-nanohoop bound fullerene system with 520 electrons using less than 4000 core hours.

7.
J Phys Chem Lett ; 13(20): 4520-4529, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35576273

RESUMO

Plasmonic nano-objects have shown great potential in enhancing applications like biological/chemical sensing, light harvesting and energy transfer, and optical/quantum computing. Therefore, an extensive effort has been vested in optimizing plasmonic systems and exploiting their field enhancement properties. Super-resolution imaging with quantum dots (QDs) is a promising method to probe plasmonic near-fields but is hindered by the distortion of the QD radiation pattern. Here, we investigate the interaction between QDs and "L-shaped" gold nanoantennas and demonstrate both theoretically and experimentally that this strong interaction can induce polarization-dependent modifications to the apparent QD emission intensity, polarization, and localization. Based on FDTD simulations and polarization-modulated single-molecule microscopy, we show that the displacement of the emitter's localization is due to the position-dependent interference between the emitter and the induced dipole, and can be up to 100 nm. Our results help pave a pathway for higher precision plasmonic near-field mapping and its underlying applications.


Assuntos
Metodologias Computacionais , Pontos Quânticos , Ouro/química , Pontos Quânticos/química , Teoria Quântica , Imagem Individual de Molécula
8.
Annu Rev Phys Chem ; 73: 255-272, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35081326

RESUMO

We review a suite of stochastic vector computational approaches for studying the electronic structure of extended condensed matter systems. These techniques help reduce algorithmic complexity, facilitate efficient parallelization, simplify computational tasks, accelerate calculations, and diminish memory requirements. While their scope is vast, we limit our study to ground-state and finite temperature density functional theory (DFT) and second-order many-body perturbation theory. More advanced topics, such as quasiparticle (charge) and optical (neutral) excitations and higher-order processes, are covered elsewhere. We start by explaining how to use stochastic vectors in computations, characterizing the associated statistical errors. Next, we show how to estimate the electron density in DFT and discuss effective techniques to reduce statistical errors. Finally, we review the use of stochastic vectors for calculating correlation energies within the second-order Møller-Plesset perturbation theory and its finite temperature variational form. Example calculation results are presented and used to demonstrate the efficacy of the methods.


Assuntos
Eletrônica
9.
J Chem Phys ; 155(20): 204105, 2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34852484

RESUMO

We introduce a tempering approach with stochastic density functional theory (sDFT), labeled t-sDFT, which reduces the statistical errors in the estimates of observable expectation values. This is achieved by rewriting the electronic density as a sum of a "warm" component complemented by "colder" correction(s). Since the warm component is larger in magnitude but faster to evaluate, we use many more stochastic orbitals for its evaluation than for the smaller-sized colder correction(s). This results in a significant reduction in the statistical fluctuations and systematic deviation compared to sDFT for the same computational effort. We demonstrate the method's performance on large hydrogen-passivated silicon nanocrystals, finding a reduction in the systematic deviation in the energy by more than an order of magnitude, while the systematic deviation in the forces is also quenched. Similarly, the statistical fluctuations are reduced by factors of ≈4-5 for the total energy and ≈1.5-2 for the forces on the atoms. Since the embedding in t-sDFT is fully stochastic, it is possible to combine t-sDFT with other variants of sDFT such as energy-window sDFT and embedded-fragmented sDFT.

10.
J Chem Phys ; 154(20): 204108, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34241170

RESUMO

Stochastic density functional theory (sDFT) is becoming a valuable tool for studying ground-state properties of extended materials. The computational complexity of describing the Kohn-Sham orbitals is replaced by introducing a set of random (stochastic) orbitals leading to linear and often sub-linear scaling of certain ground-state observables at the account of introducing a statistical error. Schemes to reduce the noise are essential, for example, for determining the structure using the forces obtained from sDFT. Recently, we have introduced two embedding schemes to mitigate the statistical fluctuations in the electron density and resultant forces on the nuclei. Both techniques were based on fragmenting the system either in real space or slicing the occupied space into energy windows, allowing for a significant reduction in the statistical fluctuations. For chemical accuracy, further reduction of the noise is required, which could be achieved by increasing the number of stochastic orbitals. However, the convergence is relatively slow as the statistical error scales as 1/Nχ according to the central limit theorem, where Nχ is the number of random orbitals. In this paper, we combined the embedding schemes mentioned above and introduced a new approach that builds on overlapped fragments and energy windows. The new approach significantly lowers the noise for ground-state properties, such as the electron density, total energy, and forces on the nuclei, as demonstrated for a G-center in bulk silicon.

11.
J Phys Chem A ; 124(49): 10111-10120, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33251807

RESUMO

We show that a stochastic approach enables calculations of the optical properties of large 2-dimensional and nanotubular excitonic molecular aggregates. Previous studies of such systems relied on numerically diagonalizing the dense and disordered Frenkel Hamiltonian, which scales approximately as O(N3) for N dye molecules. Our approach scales much more efficiently as O(Nlog(N)), enabling quick study of systems with a million of coupled molecules on the micrometer size scale. We calculate several important experimental observables, including the optical absorption spectrum and density of states, and develop a stochastic formalism for the participation ratio. Quantitative agreement with traditional matrix diagonalization methods is demonstrated for both small- and intermediate-size systems. The stochastic methodology enables the study of the effects of spatial-correlation in site energies on the optical signatures of large 2D aggregates. Our results demonstrate that stochastic methods present a path forward for screening structural parameters and validating experiments and theoretical predictions in large excitonic aggregates.

12.
J Chem Phys ; 153(7): 074113, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32828086

RESUMO

We develop a range-separated stochastic resolution of identity (RS-SRI) approach for the four-index electron repulsion integrals, where the larger terms (above a predefined threshold) are treated using a deterministic RI and the remaining terms are treated using a SRI. The approach is implemented within a second-order Green's function formalism with an improved O(N3) scaling with the size of the basis set, N. Moreover, the RS approach greatly reduces the statistical error compared to the full stochastic version [T. Y. Takeshita et al., J. Chem. Phys. 151, 044114 (2019)], resulting in computational speedups of ground and excited state energies of nearly two orders of magnitude, as demonstrated for hydrogen dimer chains and water clusters.

13.
J Chem Phys ; 152(16): 161103, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32357762

RESUMO

Efficient Boltzmann-sampling using first-principles methods is challenging for extended systems due to the steep scaling of electronic structure methods with the system size. Stochastic approaches provide a gentler system-size dependency at the cost of introducing "noisy" forces, which could limit the efficiency of the sampling. When the forces are deterministic, the first-order Langevin dynamics (FOLD) offers efficient sampling by combining a well-chosen preconditioning matrix S with a time-step-bias-mitigating propagator [G. Mazzola and S. Sorella, Phys. Rev. Lett. 118, 015703 (2017)]. However, when forces are noisy, S is set equal to the force-covariance matrix, a procedure that severely limits the efficiency and the stability of the sampling. Here, we develop a new, general, optimal, and stable sampling approach for FOLD under noisy forces. We apply it for silicon nanocrystals treated with stochastic density functional theory and show efficiency improvements by an order-of-magnitude.

14.
J Chem Theory Comput ; 16(2): 1064-1072, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-31899638

RESUMO

Generalized Kohn-Sham density functional theory is a popular computational tool for the ground state of extended systems, particularly within range-separated hybrid (RSH) functionals that capture the long-range electronic interaction. Unfortunately, the heavy computational cost of the nonlocal exchange operator in RSH-DFT usually confines the approach to systems with at most a few hundred electrons. A significant reduction in the computational cost is achieved by representing the density matrix with stochastic orbitals and a stochastic decomposition of the Coulomb convolution (J. Phys. Chem. A 2016, 120, 3071). Here, we extend the stochastic RSH approach to excited states within the framework of linear-response generalized Kohn-Sham time-dependent density functional theory (GKS-TDDFT) based on the plane-wave basis. As a validation of the stochastic GKS-TDDFT method, the excitation energies of small molecules N2 and CO are calculated and compared to the deterministic results. The computational efficiency of the stochastic method is demonstrated with a two-dimensional MoS2 sheet (∼1500 electrons), whose excitation energy, exciton charge density, and (excited state) geometric relaxation are determined in the absence and presence of a point defect.

15.
J Chem Phys ; 151(17): 174115, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703523

RESUMO

Over this past decade, we combined the idea of stochastic resolution of identity with a variety of electronic structure methods. In our stochastic Kohn-Sham density functional theory (DFT) method, the density is an average over multiple stochastic samples, with stochastic errors that decrease as the inverse square root of the number of sampling orbitals. Here, we develop a stochastic embedding density functional theory method (se-DFT) that selectively reduces the stochastic error (specifically on the forces) for a selected subsystem(s). The motivation, similar to that of other quantum embedding methods, is that for many systems of practical interest, the properties are often determined by only a small subsystem. In stochastic embedding DFT, two sets of orbitals are used: a deterministic one associated with the embedded subspace and the rest, which is described by a stochastic set. The method agrees exactly with deterministic calculations in the limit of a large number of stochastic samples. We apply se-DFT to study a p-nitroaniline molecule in water, where the statistical errors in the forces on the system (the p-nitroaniline molecule) are reduced by an order of magnitude compared with nonembedding stochastic DFT.

16.
J Chem Theory Comput ; 15(12): 6703-6711, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31652067

RESUMO

We develop a stochastic resolution of identity approach to the real-time second-order Green's function (real-time sRI-GF2) theory, extending our recent work for imaginary-time Matsubara Green's function [ Takeshita et al. J. Chem. Phys. 2019 , 151 , 044114 ]. The approach provides a framework to obtain the quasi-particle spectra across a wide range of frequencies and predicts ionization potentials and electron affinities. To assess the accuracy of the real-time sRI-GF2, we study a series of molecules and compare our results to experiments as well as to a many-body perturbation approach based on the GW approximation, where we find that the real-time sRI-GF2 is as accurate as self-consistent GW. The stochastic formulation reduces the formal computatinal scaling from O(Ne5) down to O(Ne3) where Ne is the number of electrons. This is illustrated for a chain of hydrogen dimers, where we observe a slightly lower than cubic scaling for systems containing up to Ne ≈ 1000 electrons.

17.
J Chem Phys ; 151(11): 114116, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31542024

RESUMO

Linear scaling density functional theory is important for understanding electronic structure properties of nanometer scale systems. Recently developed stochastic density functional theory can achieve linear or even sublinear scaling for various electronic properties without relying on the sparsity of the density matrix. The basic idea relies on projecting stochastic orbitals onto the occupied space by expanding the Fermi-Dirac operator and repeating this for Nχ stochastic orbitals. Often, a large number of stochastic orbitals are required to reduce the statistical fluctuations (which scale as Nχ -1/2) below a tolerable threshold. In this work, we introduce a new stochastic density functional theory that can efficiently reduce the statistical fluctuations for certain observable and can also be integrated with an embedded fragmentation scheme. The approach is based on dividing the occupied space into energy windows and projecting the stochastic orbitals with a single expansion onto all windows simultaneously. This allows for a significant reduction of the noise as illustrated for bulk silicon with a large supercell. We also provide theoretical analysis to rationalize why the noise can be reduced only for a certain class of ground state properties, such as the forces and electron density.

18.
J Chem Phys ; 151(4): 044114, 2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31370516

RESUMO

We develop a stochastic resolution of identity representation to the second-order Matsubara Green's function (sRI-GF2) theory. Using a stochastic resolution of the Coulomb integrals, the second order Born self-energy in GF2 is decoupled and reduced to matrix products/contractions, which reduces the computational cost from O(N5) to O(N3) (with N being the number of atomic orbitals). The current approach can be viewed as an extension to our previous work on stochastic resolution of identity second order Møller-Plesset perturbation theory [T. Y. Takeshita et al., J. Chem. Theory Comput. 13, 4605 (2017)] and offers an alternative to previous stochastic GF2 formulations [D. Neuhauser et al., J. Chem. Theory Comput. 13, 5396 (2017)]. We show that sRI-GF2 recovers the deterministic GF2 results for small systems, is computationally faster than deterministic GF2 for N > 80, and is a practical approach to describe weak correlations in systems with 103 electrons and more.

19.
J Chem Phys ; 150(18): 184118, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091914

RESUMO

We develop a stochastic approach to time-dependent density functional theory with optimally tuned range-separated hybrids containing nonlocal exchange, for calculating optical spectra. The attractive electron-hole interaction, which leads to the formation of excitons, is included through a time-dependent linear-response technique with a nonlocal exchange interaction which is computed very efficiently through a stochastic scheme. The method is inexpensive and scales quadratically with the number of electrons, at almost the same (low) cost of time dependent Kohn-Sham with local functionals. Our results are in excellent agreement with experimental data, and the efficiency of the approach is demonstrated on large finite phosphorene sheets containing up to 1958 valence electrons.

20.
J Chem Phys ; 150(3): 034106, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30660162

RESUMO

The stochastic density functional theory (DFT) [R. Baer et al., Phys. Rev. Lett. 111, 106402 (2013)] is a valuable linear-scaling approach to Kohn-Sham DFT that does not rely on the sparsity of the density matrix. Linear (and often sub-linear) scaling is achieved by introducing a controlled statistical error in the density, energy, and forces. The statistical error (noise) is proportional to the inverse square root of the number of stochastic orbitals and thus decreases slowly; however, by dividing the system into fragments that are embedded stochastically, the statistical error can be reduced significantly. This has been shown to provide remarkable results for non-covalently-bonded systems; however, the application to covalently bonded systems had limited success, particularly for delocalized electrons. Here, we show that the statistical error in the density correlates with both the density and the density matrix of the system and propose a new fragmentation scheme that elegantly interpolates between overlapped fragments. We assess the performance of the approach for bulk silicon of varying supercell sizes (up to Ne = 16 384 electrons) and show that overlapped fragments reduce significantly the statistical noise even for systems with a delocalized density matrix.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...