Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5876, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735573

RESUMO

Two-photon polymerization lithography is promising for producing three-dimensional structures with user-defined micro- and nanoscale features. Additionally, shrinkage by thermolysis can readily shorten the lattice constant of three-dimensional photonic crystals and enhance their resolution and mechanical properties; however, this technique suffers from non-uniform shrinkage owing to substrate pinning during heating. Here, we develop a simple method using poly(vinyl alcohol)-assisted uniform shrinking of three-dimensional printed structures. Microscopic three-dimensional printed objects are picked and placed onto a receiving substrate, followed by heating to induce shrinkage. We show the successful uniform heat-shrinking of three-dimensional prints with various shapes and sizes, without sacrificial support structures, and observe that the surface properties of the receiving substrate are important factors for uniform shrinking. Moreover, we print a three-dimensional mascot model that is then uniformly shrunk, producing vivid colors from colorless woodpile photonic crystals. The proposed method has significant potential for application in mechanics, optics, and photonics.

2.
ACS Appl Mater Interfaces ; 15(26): 31664-31674, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37350311

RESUMO

While metal-organic frameworks (MOFs) are promising gas adsorbents, their tortuous microporous structures cause additional resistance for gas diffusion, thus hindering the accessibility of interior active sites. Here, we present a practical strategy to incorporate missing cluster defects into a representative low-coordinated MOFs structure, Mg-MOF-74, while maintaining the stability of a defect-rich structure. In this proposed method, graphene oxide (GO) is employed as modulator, and crystallization time is varied to promote defect formation by altering the nucleation and crystal growth processes. The best performing GO-modified Mg-MOF-74 sample (MOF@GO 40 h) achieved 18% and 15% improvement in surface area and total pore volume, respectively, over pristine Mg-MOF-74. The reduced diffusion resistance to gas flow translates to increased accessibility for gas molecules to active Mg adsorption sites inside the MOFs, leading to enhanced CO2 capture performance; the CO2 uptake quantity of MOF@GO 40 h arrives at 6.06 mmol/g at 0.1 bar and at 9.17 mmol/g at 1 bar and 25 °C, 19.29% and 16.37% higher, respectively, than that of the pristine Mg-MOF-74, with a CO2/N2 selectivity around 17.36% greater than that of pristine Mg-MOF-74. Our study demonstrates a facile approach for incorporating defects into MOFs systems with low coordination environments, thus expanding the library of defect-rich MOFs beyond the current highly coordinated MOF systems.

3.
Eur J Med Chem ; 256: 115412, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37146344

RESUMO

Isoquinoline alkaloids are a rich source of multimodal agents with distinctive structural specificity and various pharmacological activities. In the present report, we propose a combination of design, synthesis, computational study, primary in-vitro screening using the lipopolysaccharide (LPS)-induced RAW 264.7 cell line, and in-vivo evaluation in mice models as a novel approach to speed up anti-inflammatory drugs discovery. The nitric oxide (NO) inhibitory effect of new compounds revealed that all of them displayed the potent NO inhibitory ability in a dose-dependent manner with no obvious cytotoxicity. A series of the model compounds 7a, 7b, 7d, 7f, and 7g have been identified as the most promising, with IC50 values of 47.76 µM, 33.8 µM, 20.76 µM, 26.74 µM, and 47.8 µM respectively in LPS-induced RAW 264.7 cell line. Structure-activity relationship (SAR) studies on a range of derivatives aided in identifying key pharmacophores in the lead compound. Western blotting data of 7d identified that our synthesized compounds can down-regulate and suppress the expression of the key inflammatory enzyme, inducible nitric oxide synthase (iNOS). These results suggested that synthesized compounds may be potent anti-inflammatory agents, inhibiting the NO-release, in turn, iNOS inflammatory pathways. Furthermore, in-vivo anti-inflammatory detection via xylene-induced ear edema in mice revealed that these compounds could also inhibit swelling in mice, with model compound 7h showing an inhibition activity (64.4%) at a concentration of 10 mg/kg comparable to the reference drug celecoxib. Molecular docking results showed that shortlisted compounds (7b, 7c, 7d, 7e, and 7h) had a potential binding affinity for iNOS with low energies, with S-Score to be -7.57, -8.22, -7.35, -8.95, -9.94 kcal/mol, respectively. All results demonstrated that the newly synthesized chiral pyrazolo isoquinoline derivatives are highly potential anti-inflammatory agents.


Assuntos
Anti-Inflamatórios , Lipopolissacarídeos , Camundongos , Animais , Simulação de Acoplamento Molecular , Óxido Nítrico Sintase Tipo II , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Relação Estrutura-Atividade , Células RAW 264.7 , Ciclo-Oxigenase 2/metabolismo , Isoquinolinas/farmacologia , Óxido Nítrico/metabolismo
4.
Org Lett ; 21(17): 7033-7037, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31436437

RESUMO

Phenols are readily available by degradation of lignin resource. Palladium-catalyzed conversion of phenols to tetrahydro-ß-carboline skeletons bearing a spirocycle at the C-1 position in water is reported. Various substituted phenols are successfully cross-annulated with different tryptamines via sequential C(Ar)-O bond cleavage of phenols, C-H bond activation of tryptamines, and C-N/C-C bond formations. This method provides a new protocol of converting lignin phenols into high-value-added compounds, such as natural product Komavine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA