Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(33): 15038-15046, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35960993

RESUMO

We disclose a 1,4,7-triazacyclononane (TACN) ligand featuring an appended boron Lewis acid. Metalation with Cu(I) affords a series of tetrahedral complexes including a boron-capped cuprous hydride. We demonstrate distinct reactivity modes as a function of chemical oxidation: hydride transfer to CO2 in the copper(I) state and oxidant-induced H2 evolution as well as alkyne reduction.


Assuntos
Cobre , Ácidos de Lewis , Boro , Cobre/química , Ligantes , Oxirredução
2.
Inorg Chem ; 60(18): 13806-13810, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34242009

RESUMO

Metal-ligand cooperative binding modes were interrogated in a series of zinc bis(thiophenoxide) complexes. A weak B-S binding interaction is observed in solution between the weakly Lewis basic thiophenoxide ligands and an appended trialkylborane. The energy of this binding event is dependent upon the strength of the Lewis acid and its proximity to the zinc thiophenoxide.

3.
Chem Commun (Camb) ; 56(86): 13105-13108, 2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33016291

RESUMO

Distance dependence of appended Lewis acids in N2H4 binding and deprotonation was evaluated within a series of zinc complexes. Variation of spacer-length to a tethered trialkylborane Lewis acid revealed distinct preferences for binding and stabilization of the resulting deprotonated N2H3- unit.


Assuntos
Boranos/química , Complexos de Coordenação/química , Ácidos de Lewis/química , Sítios de Ligação , Hidrazinas/química , Modelos Moleculares , Zinco/química
4.
Chem Commun (Camb) ; 55(79): 11896-11899, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31528878

RESUMO

We present the preparation of a nitrogen-based bidentate ligand featuring an appended boron Lewis acid as well as its tetrahedral Fe2+ and Zn2+ complexes. These complexes act as platforms for hydrazine and hydroxylamine capture and reduction chemistry.

5.
Dalton Trans ; 48(20): 6899-6909, 2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31038147

RESUMO

A Cu(i) fully fluorinated O-donor monodentate alkoxide complex, K[Cu(OC4F9)2], was previously shown to form a trinuclear copper-dioxygen species with a {Cu3(µ3-O)2} core, TOC4F9, upon reactivity with O2 at low temperature. Herein is reported a significantly expanded kinetic and mechanistic study of TOC4F9 formation using stopped-flow spectroscopy. The TOC4F9 complex performs catalytic oxidase conversion of hydroquinone (H2Q) to benzoquinone (Q). TOC4F9 also demonstrated hydroxylation of 2,4-di-tert-butylphenolate (DBP) to catecholate, making TOC4F9 the first trinuclear species to perform tyrosinase (both monooxygenase and oxidase) chemistry. Resonance Raman spectra were also obtained for TOC4F9, to our knowledge, the first such spectra for any T species. The mechanism and substrate reactivity of TOC4F9 are compared to those of its bidentate counterpart, TpinF, formed from K[Cu(pinF)(PR3)]. The monodentate derivative has both faster initial formation and more diverse substrate reactivity.


Assuntos
Cobre/química , Hidrocarbonetos Fluorados/química , Monofenol Mono-Oxigenase/química , Catálise , Temperatura Baixa , Cinética , Ligantes , Modelos Moleculares , Estrutura Molecular , Oxirredução , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...