Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103492

RESUMO

Senescence of nondividing neurons remains an immature concept, with especially the regulatory molecular mechanisms of senescence-like phenotypes and the role of proteins associated with neurodegenerative diseases in triggering neuronal senescence remaining poorly explored. In this study, we reveal that the nucleolar polyglutamine binding protein 3 (PQBP3; also termed NOL7), which has been linked to polyQ neurodegenerative diseases, regulates senescence as a gatekeeper of cytoplasmic DNA leakage. PQBP3 directly binds PSME3 (proteasome activator complex subunit 3), a subunit of the 11S proteasome regulator complex, decreasing PSME3 interaction with Lamin B1 and thereby preventing Lamin B1 degradation and senescence. Depletion of endogenous PQBP3 causes nuclear membrane instability and release of genomic DNA from the nucleus to the cytosol. Among multiple tested polyQ proteins, ataxin-1 (ATXN1) partially sequesters PQBP3 to inclusion bodies, reducing nucleolar PQBP3 levels. Consistently, knock-in mice expressing mutant Atxn1 exhibit decreased nuclear PQBP3 and a senescence phenotype in Purkinje cells of the cerebellum. Collectively, these results suggest homologous roles of the nucleolar protein PQBP3 in cellular senescence and neurodegeneration.

2.
Biochem Biophys Res Commun ; 736: 150453, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39126896

RESUMO

PQBP3 is a protein binding to polyglutamine tract sequences that are expanded in a group of neurodegenerative diseases called polyglutamine diseases. The function of PQBP3 was revealed recently as an inhibitor protein of proteasome-dependent degradation of Lamin B1 that is shifted from nucleolus to peripheral region of nucleus to keep nuclear membrane stability. Here, we address whether PQBP3 is an intrinsically disordered protein (IDP) like other polyglutamine binding proteins including PQBP1, PQBP5 and VCP. Multiple bioinformatics analyses predict that N-terminal region of PQBP3 is unstructured. High-speed atomic force microscopy (HS-AFM) reveals that N-terminal region of PQBP3 is dynamically changed in the structure consistently with the predictions of the bioinformatics analyses. These data support that PQBP3 is also an IDP.

3.
Commun Biol ; 7(1): 413, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594382

RESUMO

Better understanding of the earliest molecular pathologies of all neurodegenerative diseases is expected to improve human therapeutics. We investigated the earliest molecular pathology of spinocerebellar ataxia type 1 (SCA1), a rare familial neurodegenerative disease that primarily induces death and dysfunction of cerebellum Purkinje cells. Extensive prior studies have identified involvement of transcription or RNA-splicing factors in the molecular pathology of SCA1. However, the regulatory network of SCA1 pathology, especially central regulators of the earliest developmental stages and inflammatory events, remains incompletely understood. Here, we elucidated the earliest developmental pathology of SCA1 using originally developed dynamic molecular network analyses of sequentially acquired RNA-seq data during differentiation of SCA1 patient-derived induced pluripotent stem cells (iPSCs) to Purkinje cells. Dynamic molecular network analysis implicated histone genes and cytokine-relevant immune response genes at the earliest stages of development, and revealed relevance of ISG15 to the following degradation and accumulation of mutant ataxin-1 in Purkinje cells of SCA1 model mice and human patients.


Assuntos
Células-Tronco Pluripotentes Induzidas , Ataxias Espinocerebelares , Animais , Humanos , Camundongos , Citocinas , Células-Tronco Pluripotentes Induzidas/patologia , Camundongos Transgênicos , Células de Purkinje/fisiologia , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Ubiquitinas
4.
Int J Mol Sci ; 25(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38612448

RESUMO

The mechanisms of neuronal cell death in neurodegenerative disease remain incompletely understood, although recent studies have made significant advances. Apoptosis was previously considered to be the only mechanism of neuronal cell death in neurodegenerative diseases. However, recent findings have challenged this dogma, identifying new subtypes of necrotic neuronal cell death. The present review provides an updated summary of necrosis subtypes and discusses their potential roles in neurodegenerative cell death. Among numerous necrosis subtypes, including necroptosis, paraptosis, ferroptosis, and pyroptosis, transcriptional repression-induced atypical cell death (TRIAD) has been identified as a potential mechanism of neuronal cell death. TRIAD is induced by functional deficiency of TEAD-YAP and self-amplifies via the release of HMGB1. TRIAD is a feasible potential mechanism of neuronal cell death in Alzheimer's disease and other neurodegenerative diseases. In addition to induction of cell death, HMGB1 released during TRIAD activates brain inflammatory responses, which is a potential link between neurodegeneration and neuroinflammation.


Assuntos
Proteína HMGB1 , Doenças Neurodegenerativas , Humanos , Doenças Neuroinflamatórias , Necrose , Morte Celular
5.
Commun Med (Lond) ; 3(1): 170, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017287

RESUMO

BACKGROUND: Charcot-Marie-Tooth disease type 1A (CMT1A) is one of the most common hereditary peripheral neuropathies caused by duplication of 1.5 Mb genome region including PMP22 gene. We aimed to correct the duplication in human CMT1A patient-derived iPS cells (CMT1A-iPSCs) by genome editing and intended to analyze the effect on Schwann cells differentiated from CMT1A-iPSCs. METHODS: We designed multiple gRNAs targeting a unique sequence present at two sites that sandwich only a single copy of duplicated peripheral myelin protein 22 (PMP22) genes, and selected one of them (gRNA3) from screening their efficiencies by T7E1 mismatch detection assay. AAV2-hSaCas9-gRNAedit was generated by subcloning gRNA3 into pX601-AAV-CMV plasmid, and the genome editing AAV vector was infected to CMT1A-iPSCs or CMT1A-iPSC-derived Schwann cell precursors. The effect of the genome editing AAV vector on myelination was evaluated by co-immunostaining of myelin basic protein (MBP), a marker of mature myelin, and microtubule-associated protein  2(MAP2), a marker of neurites or by electron microscopy. RESULTS: Here we show that infection of CMT1A-iPS cells (iPSCs) with AAV2-hSaCas9-gRNAedit expressing both hSaCas9 and gRNA targeting the tandem repeat sequence decreased PMP22 gene duplication by 20-40%. Infection of CMT1A-iPSC-derived Schwann cell precursors with AAV2-hSaCas9-gRNAedit normalized PMP22 mRNA and PMP22 protein expression levels, and also ameliorated increased apoptosis and impaired myelination in CMT1A-iPSC-derived Schwann cells. CONCLUSIONS: In vivo transfer of AAV2-hSaCas9-gRNAedit to peripheral nerves could be a potential therapeutic modality for CMT1A patient after careful examinations of toxicity including off-target mutations.


Charcot-Marie-Tooth disease type 1A (CMT1A) is a common heritable form of the condition that develops when nerves in the body's extremities, such as the hands, feet and arms, are damaged due to an extra copy of PMP22 gene being incorrectly produced. Currently, no known therapies exist. Here, we developed a method to delete the additional copy of PMP22 gene by 20­40% to prevent overproduction. Our results show that this method can reduce PMP22 protein production, leading to near normal production in patient's nerve cells. Further safety assessments should now be undertaken. If the treatment is safe for patients it could become a therapeutic option for CMT1A patients.

6.
Cell ; 186(22): 4898-4919.e25, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37827155

RESUMO

Expansions of repeat DNA tracts cause >70 diseases, and ongoing expansions in brains exacerbate disease. During expansion mutations, single-stranded DNAs (ssDNAs) form slipped-DNAs. We find the ssDNA-binding complexes canonical replication protein A (RPA1, RPA2, and RPA3) and Alternative-RPA (RPA1, RPA3, and primate-specific RPA4) are upregulated in Huntington disease and spinocerebellar ataxia type 1 (SCA1) patient brains. Protein interactomes of RPA and Alt-RPA reveal unique and shared partners, including modifiers of CAG instability and disease presentation. RPA enhances in vitro melting, FAN1 excision, and repair of slipped-CAGs and protects against CAG expansions in human cells. RPA overexpression in SCA1 mouse brains ablates expansions, coincident with decreased ATXN1 aggregation, reduced brain DNA damage, improved neuron morphology, and rescued motor phenotypes. In contrast, Alt-RPA inhibits melting, FAN1 excision, and repair of slipped-CAGs and promotes CAG expansions. These findings suggest a functional interplay between the two RPAs where Alt-RPA may antagonistically offset RPA's suppression of disease-associated repeat expansions, which may extend to other DNA processes.


Assuntos
Proteína de Replicação A , Expansão das Repetições de Trinucleotídeos , Animais , Humanos , Camundongos , DNA/genética , Reparo de Erro de Pareamento de DNA , Doença de Huntington/genética , Proteínas/genética , Ataxias Espinocerebelares/genética , Proteína de Replicação A/metabolismo
7.
Cell Rep ; 42(8): 112962, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37591248

RESUMO

Prion-like protein propagation is considered a common pathogenic mechanism in neurodegenerative diseases. Here we investigate the in vivo propagation pattern and aggregation state of mutant α-synuclein by injecting adeno-associated viral (AAV)-α-synuclein-A53T-EGFP into the mouse olfactory cortex. Comparison of aggregation states in various brain regions at multiple time points after injection using western blot analyses shows that the monomeric state of the mutant/misfolded protein propagates to remote brain regions by 2 weeks and that the propagated proteins aggregate in situ after being incorporated into neurons. Moreover, injection of Alexa 488-labeled α-synuclein-A53T confirms the monomeric propagation at 2 weeks. Super-resolution microscopy shows that both α-synuclein-A53T proteins propagate via the lymphatic system, penetrate perineuronal nets, and reach the surface of neurons. Electron microscopy shows that the propagated mutant/misfolded monomer forms fibrils characteristic of Parkinson's disease after its incorporation into neurons. These findings suggest a mode of propagation different from that of aggregate-dependent propagation.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Camundongos , alfa-Sinucleína/genética , Encéfalo , Sistema Linfático , Western Blotting , Proteínas Mutantes
8.
Brain Behav Immun ; 111: 32-45, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37004758

RESUMO

The molecular pathological mechanisms underlying schizophrenia remain unclear; however, genomic analysis has identified genes encoding important risk molecules. One such molecule is neurexin 1α (NRXN1α), a presynaptic cell adhesion molecule. In addition, novel autoantibodies that target the nervous system have been found in patients with encephalitis and neurological disorders. Some of these autoantibodies inhibit synaptic antigen molecules. Studies have examined the association between schizophrenia and autoimmunity; however, the pathological data remain unclear. Here, we identified a novel autoantibody against NRXN1α in patients with schizophrenia (n = 2.1%) in a Japanese cohort (n = 387). None of the healthy control participants (n = 362) were positive for anti-NRXN1α autoantibodies. Anti-NRXN1α autoantibodies isolated from patients with schizophrenia inhibited the molecular interaction between NRXN1α and Neuroligin 1 (NLGN1) and between NRXN1α and Neuroligin 2 (NLGN2). Additionally, these autoantibodies reduced the frequency of the miniature excitatory postsynaptic current in the frontal cortex of mice. Administration of anti-NRXN1α autoantibodies from patients with schizophrenia into the cerebrospinal fluid of mice reduced the number of spines/synapses in the frontal cortex and induced schizophrenia-related behaviors such as reduced cognition, impaired pre-pulse inhibition, and reduced social novelty preference. These changes were improved through the removal of anti-NRXN1α autoantibodies from the IgG fraction of patients with schizophrenia. These findings demonstrate that anti-NRXN1α autoantibodies transferred from patients with schizophrenia cause schizophrenia-related pathology in mice. Removal of anti-NRXN1α autoantibodies may be a therapeutic target for a subgroup of patients who are positive for these autoantibodies.


Assuntos
Esquizofrenia , Camundongos , Animais , Esquizofrenia/genética , Proteínas de Ligação ao Cálcio/metabolismo , Moléculas de Adesão de Célula Nervosa/genética , Moléculas de Adesão de Célula Nervosa/metabolismo , Autoanticorpos/metabolismo , Fenótipo
9.
Nat Commun ; 14(1): 9, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599853

RESUMO

Polyglutamine binding protein 5 (PQBP5), also called nucleolar protein 10 (NOL10), binds to polyglutamine tract sequences and is expressed in the nucleolus. Using dynamic imaging of high-speed atomic force microscopy, we show that PQBP5/NOL10 is an intrinsically disordered protein. Super-resolution microscopy and correlative light and electron microscopy method show that PQBP5/NOL10 makes up the skeletal structure of the nucleolus, constituting the granule meshwork in the granular component area, which is distinct from other nucleolar substructures, such as the fibrillar center and dense fibrillar component. In contrast to other nucleolar proteins, which disperse to the nucleoplasm under osmotic stress conditions, PQBP5/NOL10 remains in the nucleolus and functions as an anchor for reassembly of other nucleolar proteins. Droplet and thermal shift assays show that the biophysical features of PQBP5/NOL10 remain stable under stress conditions, explaining the spatial role of this protein. PQBP5/NOL10 can be functionally depleted by sequestration with polyglutamine disease proteins in vitro and in vivo, leading to the pathological deformity or disappearance of the nucleolus. Taken together, these findings indicate that PQBP5/NOL10 is an essential protein needed to maintain the structure of the nucleolus.


Assuntos
Nucléolo Celular , Núcleo Celular , Proteínas Nucleares , Humanos , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Pressão Osmótica/fisiologia
10.
Int J Mol Sci ; 23(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35682906

RESUMO

The idea that a common pathology underlies various neurodegenerative diseases and dementias has attracted considerable attention in the basic and medical sciences. Polyglutamine binding protein-1 (PQBP1) was identified in 1998 after a molecule was predicted to bind to polyglutamine tract amino acid sequences, which are associated with a family of neurodegenerative disorders called polyglutamine diseases. Hereditary gene mutations of PQBP1 cause intellectual disability, whereas acquired loss of function of PQBP1 contributes to dementia pathology. PQBP1 functions in innate immune cells as an intracellular receptor that recognizes pathogens and neurodegenerative proteins. It is an intrinsically disordered protein that generates intracellular foci, similar to other neurodegenerative disease proteins such as TDP43, FUS, and hnRNPs. The knowledge accumulated over more than 20 years has given rise to a new concept that shifts in the equilibrium between physiological and pathological processes have their basis in the dysregulation of common protein structure-linked molecular mechanisms.


Assuntos
Deficiência Intelectual , Doenças Neurodegenerativas , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Imunidade Inata , Deficiência Intelectual/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Proteínas Nucleares/genética
11.
Rinsho Shinkeigaku ; 62(6): 429-442, 2022 Jun 24.
Artigo em Japonês | MEDLINE | ID: mdl-35644579

RESUMO

The Japanese Society of Neurology discusses research, education, and medical care in the field of neurology and makes recommendations to the national government. Dr. Mizusawa, the former representative director of the Japanese Society of Neurology, selected committee members and made "Recommendations for Promotion of Research for Overcoming Neurological Diseases" in 2013. After that, the Future Vision Committee was established in 2014, and these recommendations have been revised once every few years by the committee. This time, the Future Vision Committee made the latest recommendations from 2020 to 2021. In this section I, we will discuss clinical and research topics of neurology categorized by the methodology, including genetic research, translational research, nucleic acid therapies, iPS research, and nursing/welfare.


Assuntos
Doenças do Sistema Nervoso , Neurologia , Humanos , Doenças do Sistema Nervoso/terapia , Sociedades Médicas
12.
Rinsho Shinkeigaku ; 62(6): 443-457, 2022 Jun 24.
Artigo em Japonês | MEDLINE | ID: mdl-35644580

RESUMO

The Japanese Society of Neurology discusses research, education, and medical care in the field of neurology and makes recommendations to the national government. Dr. Mizusawa, the former representative director of the Japanese Society of Neurology, selected committee members and made "Recommendations for Promotion of Research for Overcoming Neurological Diseases" in 2013. After that, the Future Vision Committee was established in 2014, and these recommendations have been revised once every few years by the committee. This time, the Future Vision Committee made the latest recommendations from 2020 to 2021. In this section II, we will discuss clinical and research topics of neurology categorized by the diseases. In each field, the hot topic of the disease was described by the expert.


Assuntos
Doenças do Sistema Nervoso , Neurologia , Humanos , Doenças do Sistema Nervoso/terapia , Sociedades Médicas
13.
Cell Rep Med ; 3(4): 100597, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35492247

RESUMO

From genetic and etiological studies, autoimmune mechanisms underlying schizophrenia are suspected; however, the details remain unclear. In this study, we describe autoantibodies against neural cell adhesion molecule (NCAM1) in patients with schizophrenia (5.4%, cell-based assay; 6.7%, ELISA) in a Japanese cohort (n = 223). Anti-NCAM1 autoantibody disrupts both NCAM1-NCAM1 and NCAM1-glial cell line-derived neurotrophic factor (GDNF) interactions. Furthermore, the anti-NCAM1 antibody purified from patients with schizophrenia interrupts NCAM1-Fyn interaction and inhibits phosphorylation of FAK, MEK1, and ERK1 when introduced into the cerebrospinal fluid of mice and also reduces the number of spines and synapses in frontal cortex. In addition, it induces schizophrenia-related behavior in mice, including deficient pre-pulse inhibition and cognitive impairment. In conclusion, anti-NCAM1 autoantibodies in patients with schizophrenia cause schizophrenia-related behavior and changes in synapses in mice. These antibodies may be a potential therapeutic target and serve as a biomarker to distinguish a small but treatable subgroup in heterogeneous patients with schizophrenia.


Assuntos
Moléculas de Adesão de Célula Nervosa , Esquizofrenia , Autoanticorpos , Antígeno CD56/genética , Humanos , Moléculas de Adesão de Célula Nervosa/genética , Esquizofrenia/genética , Sinapses/metabolismo
14.
Brain Nerve ; 74(1): 59-62, 2022 Jan.
Artigo em Japonês | MEDLINE | ID: mdl-34992175

RESUMO

Here, I present my career as a case study for young researchers and clinicians to consider their futures. I outline a number of possibilities, the most important of which are the originality and creativity of research and passion to overcome the difficulties experienced when generating a new path.


Assuntos
Medicina Clínica , Liderança , Criatividade , Emoções , Humanos , Pesquisadores
15.
Nat Commun ; 12(1): 6565, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34782623

RESUMO

Brain inflammation generally accompanies and accelerates neurodegeneration. Here we report a microglial mechanism in which polyglutamine binding protein 1 (PQBP1) senses extrinsic tau 3R/4R proteins by direct interaction and triggers an innate immune response by activating a cyclic GMP-AMP synthase (cGAS)-Stimulator of interferon genes (STING) pathway. Tamoxifen-inducible and microglia-specific depletion of PQBP1 in primary culture in vitro and mouse brain in vivo shows that PQBP1 is essential for sensing-tau to induce nuclear translocation of nuclear factor κB (NFκB), NFκB-dependent transcription of inflammation genes, brain inflammation in vivo, and eventually mouse cognitive impairment. Collectively, PQBP1 is an intracellular receptor in the cGAS-STING pathway not only for cDNA of human immunodeficiency virus (HIV) but also for the transmissible neurodegenerative disease protein tau. This study characterises a mechanism of brain inflammation that is common to virus infection and neurodegenerative disorders.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Encefalite/metabolismo , Proteínas de Membrana/metabolismo , Microglia/metabolismo , Nucleotidiltransferases/metabolismo , Animais , Encéfalo , Proteínas de Ligação a DNA/genética , Encefalite/imunologia , Feminino , HIV , Humanos , Imunidade Inata , Masculino , Glicoproteínas de Membrana , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/efeitos dos fármacos , NF-kappa B/metabolismo , Doenças Neurodegenerativas , Nucleotidiltransferases/genética , Tamoxifeno/farmacologia
16.
Rinsho Shinkeigaku ; 61(11): 709-721, 2021 Nov 24.
Artigo em Japonês | MEDLINE | ID: mdl-34657923

RESUMO

The Japanese Society of Neurology discusses research, education, and medical care in the field of neurology and makes recommendations to the national government. Dr. Mizusawa, the former representative director of the Japanese Society of Neurology, selected committee members and made "Recommendations for Promotion of Research for Overcoming Neurological Diseases" in 2013. After that, the Future Vision Committee was established in 2014, and these recommendations have been revised once every few years by the committee. This time, the Future Vision Committee made the latest recommendations from 2020 to 2021. In this document, the general part is 1) What is neurological disease? 2) Current status of neurological disease overcoming research, 3) Significance and necessity of neurological disease overcoming research, 4) Research promotion system for overcoming neurological disease, 5) the roadmap for overcoming neuromuscular diseases, 6) a summary version of these recommendations are explained using figures that are easy for the general public to understand.


Assuntos
Neurologia , Sociedades Médicas
17.
Commun Biol ; 4(1): 1175, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635772

RESUMO

DNA damage is increased in Alzheimer's disease (AD), while the underlying mechanisms are unknown. Here, we employ comprehensive phosphoproteome analysis, and identify abnormal phosphorylation of 70 kDa subunit of Ku antigen (Ku70) at Ser77/78, which prevents Ku70-DNA interaction, in human AD postmortem brains. The abnormal phosphorylation inhibits accumulation of Ku70 to the foci of DNA double strand break (DSB), impairs DNA damage repair and eventually causes transcriptional repression-induced atypical cell death (TRIAD). Cells under TRIAD necrosis reveal senescence phenotypes. Extracellular high mobility group box 1 (HMGB1) protein, which is released from necrotic or hyper-activated neurons in AD, binds to toll-like receptor 4 (TLR4) of neighboring neurons, and activates protein kinase C alpha (PKCα) that executes Ku70 phosphorylation at Ser77/78. Administration of human monoclonal anti-HMGB1 antibody to post-symptomatic AD model mice decreases neuronal DSBs, suppresses secondary TRIAD necrosis of neurons, prevents escalation of neurodegeneration, and ameliorates cognitive symptoms. TRIAD shares multiple features with senescence. These results discover the HMGB1-Ku70 axis that accounts for the increase of neuronal DNA damage and secondary enhancement of TRIAD, the cell death phenotype of senescence, in AD.


Assuntos
Doença de Alzheimer/patologia , Dano ao DNA , Reparo do DNA , Proteína HMGB1/fisiologia , Autoantígeno Ku/metabolismo , Transdução de Sinais/genética , Animais , Proteína HMGB1/genética , Camundongos , Camundongos Transgênicos , Fosforilação
18.
Commun Biol ; 4(1): 961, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385591

RESUMO

Multiple gene mutations cause familial frontotemporal lobar degeneration (FTLD) while no single gene mutations exists in sporadic FTLD. Various proteins aggregate in variable regions of the brain, leading to multiple pathological and clinical prototypes. The heterogeneity of FTLD could be one of the reasons preventing development of disease-modifying therapy. We newly develop a mathematical method to analyze chronological changes of PPI networks with sequential big data from comprehensive phosphoproteome of four FTLD knock-in (KI) mouse models (PGRNR504X-KI, TDP43N267S-KI, VCPT262A-KI and CHMP2BQ165X-KI mice) together with four transgenic mouse models of Alzheimer's disease (AD) and with APPKM670/671NL-KI mice at multiple time points. The new method reveals the common core pathological network across FTLD and AD, which is shared by mouse models and human postmortem brains. Based on the prediction, we performed therapeutic intervention of the FTLD models, and confirmed amelioration of pathologies and symptoms of four FTLD mouse models by interruption of the core molecule HMGB1, verifying the new mathematical method to predict dynamic molecular networks.


Assuntos
Doença de Alzheimer/etiologia , Modelos Animais de Doenças , Degeneração Lobar Frontotemporal/etiologia , Doença de Alzheimer/patologia , Animais , Degeneração Lobar Frontotemporal/patologia , Humanos , Camundongos , Camundongos Transgênicos , Modelos Teóricos
19.
ACS Chem Neurosci ; 12(16): 3015-3027, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34319089

RESUMO

Tau aggregation is a central hallmark of tauopathies such as frontotemporal lobar degeneration and progressive supranuclear palsy as well as of Alzheimer's disease, and it has been a target for therapeutic development. Herein, we unexpectedly found that hepta-histidine (7H), an inhibitor of the interaction between Ku70 and Huntingtin proteins, suppresses aggregation of Tau-R3 peptides in vitro. Addition of the trans-activator of transcription (TAT) sequence (YGRKKRRQRRR) derived from the TAT protein to 7H increased its permeability into cells, and TAT-7H treatment of iPS cell-derived neurons carrying Tau or APP mutations suppressed Tau phosphorylation. These results indicate that 7H is a promising lead compound for developing anti-aggregation drugs against Tau-related neurodegenerative diseases including Alzheimer's disease (AD).


Assuntos
Doença de Alzheimer , Degeneração Lobar Frontotemporal , Tauopatias , Doença de Alzheimer/tratamento farmacológico , Histidina , Humanos , Proteínas tau
20.
Life Sci Alliance ; 4(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34130995

RESUMO

The early-stage pathologies of frontotemporal lobal degeneration (FTLD) remain largely unknown. In VCPT262A-KI mice carrying VCP gene mutation linked to FTLD, insufficient DNA damage repair in neural stem/progenitor cells (NSCs) activated DNA-PK and CDK1 that disabled MCM3 essential for the G1/S cell cycle transition. Abnormal neural exit produced neurons carrying over unrepaired DNA damage and induced early-stage transcriptional repression-induced atypical cell death (TRIAD) necrosis accompanied by the specific markers pSer46-MARCKS and YAP. In utero gene therapy expressing normal VCP or non-phosphorylated mutant MCM3 rescued DNA damage, neuronal necrosis, cognitive function, and TDP43 aggregation in adult neurons of VCPT262A-KI mice, whereas similar therapy in adulthood was less effective. The similar early-stage neuronal necrosis was detected in PGRNR504X-KI, CHMP2BQ165X-KI, and TDPN267S-KI mice, and blocked by embryonic treatment with AAV-non-phospho-MCM3. Moreover, YAP-dependent necrosis occurred in neurons of human FTLD patients, and consistently pSer46-MARCKS was increased in cerebrospinal fluid (CSF) and serum of these patients. Collectively, developmental stress followed by early-stage neuronal necrosis is a potential target for therapeutics and one of the earliest general biomarkers for FTLD.


Assuntos
Degeneração Lobar Frontotemporal/patologia , Células-Tronco Neurais/metabolismo , Proteína com Valosina/metabolismo , Animais , Ciclo Celular , Linhagem da Célula/genética , Células Cultivadas , Dano ao DNA/genética , Dano ao DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Degeneração Lobar Frontotemporal/líquido cefalorraquidiano , Degeneração Lobar Frontotemporal/genética , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Necrose/metabolismo , Necrose/patologia , Células-Tronco Neurais/patologia , Neurônios/metabolismo , Proteína com Valosina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA