Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 9(375)2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28148846

RESUMO

Engineered neural stem cells (NSCs) are a promising approach to treating glioblastoma (GBM). The ideal NSC drug carrier for clinical use should be easily isolated and autologous to avoid immune rejection. We transdifferentiated (TD) human fibroblasts into tumor-homing early-stage induced NSCs (h-iNSCTE), engineered them to express optical reporters and different therapeutic gene products, and assessed the tumor-homing migration and therapeutic efficacy of cytotoxic h-iNSCTE in patient-derived GBM models of surgical and nonsurgical disease. Molecular and functional analysis revealed that our single-factor SOX2 TD strategy converted human skin fibroblasts into h-iNSCTE that were nestin+ and expressed pathways associated with tumor-homing migration in 4 days. Time-lapse motion analysis showed that h-iNSCTE rapidly migrated to human GBM cells and penetrated human GBM spheroids, a process inhibited by blockade of CXCR4. Serial imaging showed that h-iNSCTE delivery of the proapoptotic agent tumor necrosis factor-α-related apoptosis-inducing ligand (TRAIL) reduced the size of solid human GBM xenografts 250-fold in 3 weeks and prolonged median survival from 22 to 49 days. Additionally, h-iNSCTE thymidine kinase/ganciclovir enzyme/prodrug therapy (h-iNSCTE-TK) reduced the size of patient-derived GBM xenografts 20-fold and extended survival from 32 to 62 days. Mimicking clinical NSC therapy, h-iNSCTE-TK therapy delivered into the postoperative surgical resection cavity delayed the regrowth of residual GBMs threefold and prolonged survival from 46 to 60 days. These results suggest that TD of human skin into h-iNSCTE is a platform for creating tumor-homing cytotoxic cell therapies for cancer, where the potential to avoid carrier rejection could maximize treatment durability in human trials.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Células-Tronco Neurais/citologia , Ligante Indutor de Apoptose Relacionado a TNF/administração & dosagem , Animais , Movimento Celular , Transdiferenciação Celular , Sistemas de Liberação de Medicamentos , Fibroblastos/citologia , Humanos , Camundongos , Células-Tronco Neurais/transplante , Pele/citologia , Esferoides Celulares , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Biomaterials ; 90: 116-25, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27016620

RESUMO

Engineered stem cell (SC)-based therapy holds enormous promise for treating the incurable brain cancer glioblastoma (GBM). Retaining the cytotoxic SCs in the surgical cavity after GBM resection is one of the greatest challenges to this approach. Here, we describe a biocompatible electrospun nanofibrous scaffold (bENS) implant capable of delivering and retaining tumor-homing cytotoxic stem cells that suppress recurrence of post-surgical GBM. As a new approach to GBM therapy, we created poly(l-lactic acid) (PLA) bENS bearing drug-releasing human mesenchymal stem cells (hMSCs). We discovered that bENS-based implant increased hMSC retention in the surgical cavity 5-fold and prolonged persistence 3-fold compared to standard direct injection using our mouse model of GBM surgical resection/recurrence. Time-lapse imaging showed cytotoxic hMSC/bENS treatment killed co-cultured human GBM cells, and allowed hMSCs to rapidly migrate off the scaffolds as they homed to GBMs. In vivo, bENS loaded with hMSCs releasing the anti-tumor protein TRAIL (bENS(sTR)) reduced the volume of established GBM xenografts 3-fold. Mimicking clinical GBM patient therapy, lining the post-operative GBM surgical cavity with bENS(sTR) implants inhibited the re-growth of residual GBM foci 2.3-fold and prolonged post-surgical median survival from 13.5 to 31 days in mice. These results suggest that nanofibrous-based SC therapies could be an innovative new approach to improve the outcomes of patients suffering from terminal brain cancer.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/terapia , Sistemas de Liberação de Medicamentos , Glioblastoma/terapia , Nanofibras/química , Transplante de Células-Tronco , Alicerces Teciduais/química , Animais , Antineoplásicos/uso terapêutico , Encéfalo/patologia , Encéfalo/cirurgia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Linhagem Celular , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Glioblastoma/patologia , Glioblastoma/cirurgia , Humanos , Camundongos Nus , Nanofibras/ultraestrutura , Poliésteres/química , Transplante de Células-Tronco/métodos , Células-Tronco/citologia
3.
Nat Commun ; 7: 10593, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26830441

RESUMO

Transdifferentiation (TD) is a recent advancement in somatic cell reprogramming. The direct conversion of TD eliminates the pluripotent intermediate state to create cells that are ideal for personalized cell therapy. Here we provide evidence that TD-derived induced neural stem cells (iNSCs) are an efficacious therapeutic strategy for brain cancer. We find that iNSCs genetically engineered with optical reporters and tumouricidal gene products retain the capacity to differentiate and induced apoptosis in co-cultured human glioblastoma cells. Time-lapse imaging shows that iNSCs are tumouritropic, homing rapidly to co-cultured glioblastoma cells and migrating extensively to distant tumour foci in the murine brain. Multimodality imaging reveals that iNSC delivery of the anticancer molecule TRAIL decreases the growth of established solid and diffuse patient-derived orthotopic glioblastoma xenografts 230- and 20-fold, respectively, while significantly prolonging the median mouse survival. These findings establish a strategy for creating autologous cell-based therapies to treat patients with aggressive forms of brain cancer.


Assuntos
Astrócitos , Glioblastoma , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Animais , Diferenciação Celular , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Fibroblastos , Humanos , Células-Tronco Pluripotentes Induzidas , Camundongos , Neoplasias Experimentais
4.
Biomaterials ; 84: 42-53, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26803410

RESUMO

Tumor-homing cytotoxic stem cell (SC) therapy is a promising new approach for treating the incurable brain cancer glioblastoma (GBM). However, problems of retaining cytotoxic SCs within the post-surgical GBM resection cavity are likely to significantly limit the clinical utility of this strategy. Here, we describe a new fibrin-based transplant approach capable of increasing cytotoxic SC retention and persistence within the resection cavity, yet remaining permissive to tumoritropic migration. This fibrin-based transplant can effectively treat both solid and post-surgical human GBM in mice. Using our murine model of image-guided model of GBM resection, we discovered that suspending human mesenchymal stem cells (hMSCS) in a fibrin matrix increased initial retention in the surgical resection cavity 2-fold and prolonged persistence in the cavity 3-fold compared to conventional delivery strategies. Time-lapse motion analysis revealed that cytotoxic hMSCs in the fibrin matrix remain tumoritropic, rapidly migrating from the fibrin matrix to co-localize with cultured human GBM cells. We encapsulated hMSCs releasing the cytotoxic agent TRAIL (hMSC-sTR) in fibrin, and found hMSC-sTR/fibrin therapy reduced the viability of multiple 3-D human GBM spheroids and regressed established human GBM xenografts 3-fold in 11 days. Mimicking clinical therapy of surgically resected GBM, intra-cavity seeding of therapeutic hMSC-sTR encapsulated in fibrin reduced post-surgical GBM volumes 6-fold, increased time to recurrence 4-fold, and prolonged median survival from 15 to 36 days compared to control-treated animals. Fibrin-based SC therapy could represent a clinically compatible, viable treatment to suppress recurrence of post-surgical GBM and other lethal cancer types.


Assuntos
Neoplasias Encefálicas/terapia , Fibrina/farmacologia , Glioblastoma/terapia , Transplante de Células-Tronco , Animais , Neoplasias Encefálicas/cirurgia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Progressão da Doença , Glioblastoma/cirurgia , Humanos , Camundongos Nus , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Alicerces Teciduais/química , Resultado do Tratamento
5.
Nanomedicine ; 12(3): 655-664, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26586551

RESUMO

Exosomes have recently come into focus as "natural nanoparticles" for use as drug delivery vehicles. Our objective was to assess the feasibility of an exosome-based drug delivery platform for a potent chemotherapeutic agent, paclitaxel (PTX), to treat MDR cancer. Herein, we developed different methods of loading exosomes released by macrophages with PTX (exoPTX), and characterized their size, stability, drug release, and in vitro antitumor efficacy. Reformation of the exosomal membrane upon sonication resulted in high loading efficiency and sustained drug release. Importantly, incorporation of PTX into exosomes increased cytotoxicity more than 50 times in drug resistant MDCKMDR1 (Pgp+) cells. Next, our studies demonstrated a nearly complete co-localization of airway-delivered exosomes with cancer cells in a model of murine Lewis lung carcinoma pulmonary metastases, and a potent anticancer effect in this mouse model. We conclude that exoPTX holds significant potential for the delivery of various chemotherapeutics to treat drug resistant cancers. FROM THE CLINICAL EDITOR: Exosomes are membrane-derived natural vesicles of ~40 - 200 nm size. They have been under extensive research as novel drug delivery vehicles. In this article, the authors developed exosome-based system to carry formulation of PTX and showed efficacy in the treatment of multi-drug resistant cancer cells. This novel system may be further developed to carry other chemotherapeutic agents in the future.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Portadores de Fármacos/química , Exossomos/química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Pulmão/efeitos dos fármacos , Paclitaxel/administração & dosagem , Animais , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/uso terapêutico , Linhagem Celular , Linhagem Celular Tumoral , Cães , Sistemas de Liberação de Medicamentos , Resistencia a Medicamentos Antineoplásicos , Feminino , Pulmão/patologia , Neoplasias Pulmonares/patologia , Macrófagos/química , Camundongos , Camundongos Endogâmicos C57BL , Paclitaxel/farmacocinética , Paclitaxel/uso terapêutico , Sonicação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...