Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging Biol ; 12024.
Artigo em Inglês | MEDLINE | ID: mdl-38500536

RESUMO

There is considerable interest in whether sensory deficiency is associated with the development of Alzheimer's disease (AD). Notably, the relationship between hearing impairment and AD is of high relevance but still poorly understood. In this study, we found early-onset hearing loss in two AD mouse models, 3xTgAD and 3xTgAD/Polß+/-. The 3xTgAD/Polß+/- mouse is DNA repair deficient and has more humanized AD features than the 3xTgAD. Both AD mouse models showed increased auditory brainstem response (ABR) thresholds between 16 and 32 kHz at 4 weeks of age, much earlier than any AD cognitive and behavioral changes. The ABR thresholds were significantly higher in 3xTgAD/Polß+/- mice than in 3xTgAD mice at 16 kHz, and distortion product otoacoustic emission signals were reduced, indicating that DNA damage may be a factor underlying early hearing impairment in AD. Poly ADP-ribosylation and protein expression levels of DNA damage markers increased significantly in the cochlea of the AD mice but not in the adjacent auditory cortex. Phosphoglycerate mutase 2 levels and the number of synaptic ribbons in the presynaptic zones of inner hair cells were decreased in the cochlea of the AD mice. Furthermore, the activity of sirtuin 3 was downregulated in the cochlea of these mice, indicative of impaired mitochondrial function. Taken together, these findings provide new insights into potential mechanisms for hearing dysfunction in AD and suggest that DNA damage in the cochlea might contribute to the development of early hearing loss in AD.

2.
Aging Cell ; 22(9): e13909, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37395319

RESUMO

Age-related hearing loss (ARHL) is the most common sensory disability associated with human aging. Yet, there are no approved measures for preventing or treating this debilitating condition. With its slow progression, continuous and safe approaches are critical for ARHL treatment. Nicotinamide Riboside (NR), a NAD+ precursor, is well tolerated even for long-term use and is already shown effective in various disease models including Alzheimer's and Parkinson's disease. It has also been beneficial against noise-induced hearing loss and in hearing loss associated with premature aging. However, its beneficial impact on ARHL is not known. Using two different wild-type mouse strains, we show that long-term NR administration prevents the progression of ARHL. Through transcriptomic and biochemical analysis, we find that NR administration restores age-associated reduction in cochlear NAD+ levels, upregulates biological pathways associated with synaptic transmission and PPAR signaling, and reduces the number of orphan ribbon synapses between afferent auditory neurons and inner hair cells. We also find that NR targets a novel pathway of lipid droplets in the cochlea by inducing the expression of CIDEC and PLIN1 proteins that are downstream of PPAR signaling and are key for lipid droplet growth. Taken together, our results demonstrate the therapeutic potential of NR treatment for ARHL and provide novel insights into its mechanism of action.


Assuntos
NAD , Presbiacusia , Humanos , Animais , Camundongos , Receptores Ativados por Proliferador de Peroxissomo , Presbiacusia/tratamento farmacológico , Presbiacusia/prevenção & controle , Cóclea , Suplementos Nutricionais
3.
Nucleic Acids Res ; 49(5): 2418-2434, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33590097

RESUMO

Cockayne syndrome (CS) is a segmental premature aging syndrome caused primarily by defects in the CSA or CSB genes. In addition to premature aging, CS patients typically exhibit microcephaly, progressive mental and sensorial retardation and cutaneous photosensitivity. Defects in the CSB gene were initially thought to primarily impair transcription-coupled nucleotide excision repair (TC-NER), predicting a relatively consistent phenotype among CS patients. In contrast, the phenotypes of CS patients are pleiotropic and variable. The latter is consistent with recent work that implicates CSB in multiple cellular systems and pathways, including DNA base excision repair, interstrand cross-link repair, transcription, chromatin remodeling, RNAPII processing, nucleolin regulation, rDNA transcription, redox homeostasis, and mitochondrial function. The discovery of additional functions for CSB could potentially explain the many clinical phenotypes of CSB patients. This review focuses on the diverse roles played by CSB in cellular pathways that enhance genome stability, providing insight into the molecular features of this complex premature aging disease.


Assuntos
DNA Helicases/fisiologia , Enzimas Reparadoras do DNA/fisiologia , Proteínas de Ligação a Poli-ADP-Ribose/fisiologia , Montagem e Desmontagem da Cromatina , Quebras de DNA de Cadeia Dupla , DNA Helicases/química , Reparo do DNA , Enzimas Reparadoras do DNA/química , DNA Ribossômico/biossíntese , Regulação da Expressão Gênica , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/química , RNA Polimerase II/metabolismo , Transcrição Gênica
4.
Aging Cell ; 19(12): e13268, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33166073

RESUMO

Cockayne syndrome (CS) is a rare premature aging disease, most commonly caused by mutations of the genes encoding the CSA or CSB proteins. CS patients display cachectic dwarfism and severe neurological manifestations and have an average life expectancy of 12 years. The CS proteins are involved in transcription and DNA repair, with the latter including transcription-coupled nucleotide excision repair (TC-NER). However, there is also evidence for mitochondrial dysfunction in CS, which likely contributes to the severe premature aging phenotype of this disease. While damaged mitochondria and impaired mitophagy were characterized in mice with CSB deficiency, such changes in the CS nematode model and CS patients are not fully known. Our cross-species transcriptomic analysis in CS postmortem brain tissue, CS mouse, and nematode models shows that mitochondrial dysfunction is indeed a common feature in CS. Restoration of mitochondrial dysfunction through NAD+ supplementation significantly improved lifespan and healthspan in the CS nematodes, highlighting mitochondrial dysfunction as a major driver of the aging features of CS. In cerebellar samples from CS patients, we found molecular signatures of dysfunctional mitochondrial dynamics and impaired mitophagy/autophagy. In primary cells depleted for CSA or CSB, this dysfunction can be corrected with supplementation of NAD+ precursors. Our study provides support for the interconnection between major causative aging theories, DNA damage accumulation, mitochondrial dysfunction, and compromised mitophagy/autophagy. Together, these three agents contribute to an accelerated aging program that can be averted by cellular NAD+ restoration.


Assuntos
Síndrome de Cockayne/metabolismo , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Mitocôndrias/metabolismo , NAD/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Senilidade Prematura/genética , Senilidade Prematura/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Cerebelo/metabolismo , Síndrome de Cockayne/genética , Síndrome de Cockayne/patologia , DNA Helicases/deficiência , DNA Helicases/genética , Enzimas Reparadoras do DNA/deficiência , Enzimas Reparadoras do DNA/genética , Modelos Animais de Doenças , Humanos , Longevidade/genética , Longevidade/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mitocôndrias/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Ligação a Poli-ADP-Ribose/deficiência , Proteínas de Ligação a Poli-ADP-Ribose/genética , Transdução de Sinais , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
5.
Nucleic Acids Res ; 48(5): 2473-2485, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31970402

RESUMO

Cockayne Syndrome (CS) is a rare neurodegenerative disease characterized by short stature, accelerated aging and short lifespan. Mutations in two human genes, ERCC8/CSA and ERCC6/CSB, are causative for CS and their protein products, CSA and CSB, while structurally unrelated, play roles in DNA repair and other aspects of DNA metabolism in human cells. Many clinical and molecular features of CS remain poorly understood, and it was observed that CSA and CSB regulate transcription of ribosomal DNA (rDNA) genes and ribosome biogenesis. Here, we investigate the dysregulation of rRNA synthesis in CS. We report that Nucleolin (Ncl), a nucleolar protein that regulates rRNA synthesis and ribosome biogenesis, interacts with CSA and CSB. In addition, CSA induces ubiquitination of Ncl, enhances binding of CSB to Ncl, and CSA and CSB both stimulate the binding of Ncl to rDNA and subsequent rRNA synthesis. CSB and CSA also increase RNA Polymerase I loading to the coding region of the rDNA and this is Ncl dependent. These findings suggest that CSA and CSB are positive regulators of rRNA synthesis via Ncl regulation. Most CS patients carry mutations in CSA and CSB and present with similar clinical features, thus our findings provide novel insights into disease mechanism.


Assuntos
Síndrome de Cockayne/genética , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Regulação da Expressão Gênica , Fosfoproteínas/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Ribossômico/genética , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Linhagem Celular , DNA Ribossômico/genética , Humanos , Modelos Biológicos , Fosfoproteínas/metabolismo , Ligação Proteica , Proteínas de Ligação a RNA/metabolismo , Nucleolina
6.
NPJ Aging Mech Dis ; 6: 1, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31934345

RESUMO

Age-related hearing loss (ARHL) is one of the most common disorders affecting elderly individuals. There is an urgent need for effective preventive measures for ARHL because none are currently available. Cockayne syndrome (CS) is a premature aging disease that presents with progressive hearing loss at a young age, but is otherwise similar to ARHL. There are two human genetic complementation groups of CS, A and B. While the clinical phenotypes in patients are similar, the proteins have very diverse functions, and insight into their convergence is of great interest. Here, we use mouse models for CS (CSA -/- and CSB m/m ) that recapitulate the hearing loss in human CS patients. We previously showed that NAD+, a key metabolite with various essential functions, is reduced in CS and associated with multiple CS phenotypes. In this study, we report that NAD+ levels are reduced in the cochlea of CSB m/m mice and that short-term treatment (10 days) with the NAD+ precursor nicotinamide riboside (NR), prevents hearing loss, restores outer hair cell loss, and improves cochlear health in CSB m/m mice. Similar, but more modest effects were observed in CSA -/- mice. Remarkably, we observed a reduction in synaptic ribbon counts in the presynaptic zones of inner hair cells in both CSA -/- and CSB m/m mice, pointing to a converging mechanism for cochlear defects in CS. Ribbon synapses facilitate rapid and sustained synaptic transmission over long periods of time. Ribeye, a core protein of synaptic ribbons, possesses an NAD(H) binding pocket which regulates its activity. Intriguingly, NAD+ supplementation rescues reduced synaptic ribbon formation in both CSA -/- and CSB m/m mutant cochleae. These findings provide valuable insight into the mechanism of CS- and ARHL-associated hearing loss, and suggest a possible intervention.

7.
Nucleic Acids Res ; 47(16): 8548-8562, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31276581

RESUMO

Cockayne syndrome is an accelerated aging disorder, caused by mutations in the CSA or CSB genes. In CSB-deficient cells, poly (ADP ribose) polymerase (PARP) is persistently activated by unrepaired DNA damage and consumes and depletes cellular nicotinamide adenine dinucleotide, which leads to mitochondrial dysfunction. Here, the distribution of poly (ADP ribose) (PAR) was determined in CSB-deficient cells using ADPr-ChAP (ADP ribose-chromatin affinity purification), and the results show striking enrichment of PAR at transcription start sites, depletion of heterochromatin and downregulation of H3K9me3-specific methyltransferases SUV39H1 and SETDB1. Induced-expression of SETDB1 in CSB-deficient cells downregulated PAR and normalized mitochondrial function. The results suggest that defects in CSB are strongly associated with loss of heterochromatin, downregulation of SETDB1, increased PAR in highly-transcribed regions, and mitochondrial dysfunction.


Assuntos
Senescência Celular/genética , Síndrome de Cockayne/genética , DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Histonas/genética , Mitocôndrias/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas Metiltransferases/genética , Fatores de Transcrição/genética , Linhagem Celular Transformada , Cromatina/química , Cromatina/metabolismo , Síndrome de Cockayne/metabolismo , Síndrome de Cockayne/patologia , DNA/genética , DNA/metabolismo , Dano ao DNA , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Histona-Lisina N-Metiltransferase , Histonas/metabolismo , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , Mitocôndrias/patologia , Mutação , NAD/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas Metiltransferases/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição , Transcrição Gênica
8.
FEBS J ; 286(6): 1058-1073, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30238623

RESUMO

The biology of aging is an area of intense research, and many questions remain about how and why cell and organismal functions decline over time. In mammalian cells, genomic instability and mitochondrial dysfunction are thought to be among the primary drivers of cellular aging. This review focuses on the interrelationship between genomic instability and mitochondrial dysfunction in mammalian cells and its relevance to age-related functional decline at the molecular and cellular level. The importance of oxidative stress and key DNA damage response pathways in cellular aging is discussed, with a special focus on poly (ADP-ribose) polymerase 1, whose persistent activation depletes cellular energy reserves, leading to mitochondrial dysfunction, loss of energy homeostasis, and altered cellular metabolism. Elucidation of the relationship between genomic instability, mitochondrial dysfunction, and the signaling pathways that connect these pathways/processes are keys to the future of research on human aging. An important component of mitochondrial health preservation is mitophagy, and this and other areas that are particularly ripe for future investigation will be discussed.


Assuntos
Envelhecimento/patologia , Instabilidade Genômica , Homeostase , Mitocôndrias/patologia , Estresse Oxidativo , Envelhecimento/metabolismo , Animais , Metabolismo Energético , Humanos , Mitocôndrias/metabolismo , Mitofagia , Poli(ADP-Ribose) Polimerases/metabolismo
9.
Sci Rep ; 8(1): 17490, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30504782

RESUMO

Cockayne syndrome (CS) is an inherited disorder that involves photosensitivity, developmental defects, progressive degeneration and characteristics of premature aging. Evidence indicates primarily nuclear roles for the major CS proteins, CSA and CSB, specifically in DNA repair and RNA transcription. We reveal herein a complex regulation of CSB targeting that involves three major consensus signals: NLS1 (aa467-481), which directs nuclear and nucleolar localization in cooperation with NoLS1 (aa302-341), and NLS2 (aa1038-1055), which seemingly optimizes nuclear enrichment. CSB localization to the nucleolus was also found to be important for full UVC resistance. CSA, which does not contain any obvious targeting sequences, was adversely affected (i.e. presumably destabilized) by any form of truncation. No inter-coordination between the subnuclear localization of CSA and CSB was observed, implying that this aspect does not underlie the clinical features of CS. The E3 ubiquitin ligase binding partner of CSA, DDB1, played an important role in CSA stability (as well as DDB2), and facilitated CSA association with chromatin following UV irradiation; yet did not affect CSB chromatin binding. We also observed that initial recruitment of CSB to DNA interstrand crosslinks is similar in the nucleoplasm and nucleolus, although final accumulation is greater in the former. Whereas assembly of CSB at sites of DNA damage in the nucleolus was not affected by RNA polymerase I inhibition, stable retention at these sites of presumed repair was abrogated. Our studies reveal a multi-faceted regulation of the intranuclear dynamics of CSA and CSB that plays a role in mediating their cellular functions.


Assuntos
Biomarcadores , Núcleo Celular/metabolismo , Síndrome de Cockayne/metabolismo , Sequência de Aminoácidos , Síndrome de Cockayne/etiologia , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Imunofluorescência , Genes Reporter , Humanos , Espaço Intracelular , Mutação , Sinais Direcionadores de Proteínas , Transporte Proteico , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...