Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e16804, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313028

RESUMO

Once thought to be a unique capability of the Langerhans islets in the pancreas of mammals, insulin (INS) signaling is now recognized as an evolutionarily ancient function going back to prokaryotes. INS is ubiquitously present not only in humans but also in unicellular eukaryotes, fungi, worms, and Drosophila. Remote homologue identification also supports the presence of INS and INS receptor in corals where the availability of glucose is largely dependent on the photosynthetic activity of the symbiotic algae. The cnidarian animal host of corals operates together with a 20,000-sized microbiome, in direct analogy to the human gut microbiome. In humans, aberrant INS signaling is the hallmark of metabolic disease, and is thought to play a major role in aging, and age-related diseases, such as Alzheimer's disease. We here would like to argue that a broader view of INS beyond its human homeostasis function may help us understand other organisms, and in turn, studying those non-model organisms may enable a novel view of the human INS signaling system. To this end, we here review INS signaling from a new angle, by drawing analogies between humans and corals at the molecular level.


Assuntos
Antozoários , Ilhotas Pancreáticas , Animais , Humanos , Antozoários/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Pâncreas/metabolismo , Transdução de Sinais
2.
PLoS One ; 18(2): e0270965, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36735673

RESUMO

With the ease of gene sequencing and the technology available to study and manipulate non-model organisms, the extension of the methodological toolbox required to translate our understanding of model organisms to non-model organisms has become an urgent problem. For example, mining of large coral and their symbiont sequence data is a challenge, but also provides an opportunity for understanding functionality and evolution of these and other non-model organisms. Much more information than for any other eukaryotic species is available for humans, especially related to signal transduction and diseases. However, the coral cnidarian host and human have diverged over 700 million years ago and homologies between proteins in the two species are therefore often in the gray zone, or at least often undetectable with traditional BLAST searches. We introduce a two-stage approach to identifying putative coral homologues of human proteins. First, through remote homology detection using Hidden Markov Models, we identify candidate human homologues in the cnidarian genome. However, for many proteins, the human genome alone contains multiple family members with similar or even more divergence in sequence. In the second stage, therefore, we filter the remote homology results based on the functional and structural plausibility of each coral candidate, shortlisting the coral proteins likely to have conserved some of the functions of the human proteins. We demonstrate our approach with a pipeline for mapping membrane receptors in humans to membrane receptors in corals, with specific focus on the stony coral, P. damicornis. More than 1000 human membrane receptors mapped to 335 coral receptors, including 151 G protein coupled receptors (GPCRs). To validate specific sub-families, we chose opsin proteins, representative GPCRs that confer light sensitivity, and Toll-like receptors, representative non-GPCRs, which function in the immune response, and their ability to communicate with microorganisms. Through detailed structure-function analysis of their ligand-binding pockets and downstream signaling cascades, we selected those candidate remote homologues likely to carry out related functions in the corals. This pipeline may prove generally useful for other non-model organisms, such as to support the growing field of synthetic biology.


Assuntos
Antozoários , Receptores Acoplados a Proteínas G , Transdução de Sinais , Animais , Humanos , Antozoários/genética , Antozoários/fisiologia , Genoma , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Modelos Animais
3.
Sci Rep ; 12(1): 15297, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36097278

RESUMO

The application of established cell viability assays such as the commonly used trypan blue staining method to coral cells is not straightforward due to different culture parameters and different cellular features specific to mammalian cells compared to marine invertebrates. Using Pocillopora damicornis as a model, we characterized the autofluorescence and tested different fluorescent dye pair combinations to identify alternative viability indicators. The cytotoxicity of different representative molecules, namely small organic molecules, proteins and nanoparticles (NP), was measured after 24 h of exposure using the fluorescent dye pair Hoechst 33342 and SYTOX orange. Our results show that this dye pair can be distinctly measured in the presence of fluorescent proteins plus chlorophyll. P. damicornis cells exposed for 24 h to Triton-X100, insulin or titanium dioxide (TiO2) NPs, respectively, at concentrations ranging from 0.5 to 100 µg/mL, revealed a LC50 of 0.46 µg/mL for Triton-X100, 6.21 µg/mL for TiO2 NPs and 33.9 µg/mL for insulin. This work presents the approach used to customize dye pairs for membrane integrity-based cell viability assays considering the species- and genotype-specific autofluorescence of scleractinian corals, namely: endogenous fluorescence characterization followed by the selection of dyes that do not overlap with endogenous signals.


Assuntos
Antozoários , Insulinas , Animais , Antozoários/metabolismo , Clorofila/metabolismo , Corantes Fluorescentes/metabolismo , Insulinas/metabolismo , Mamíferos , Coloração e Rotulagem
4.
J Med Internet Res ; 23(6): e26963, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-33878017

RESUMO

BACKGROUND: Self-focused augmented reality (AR) technologies are growing in popularity and present an opportunity to address health communication and behavior change challenges. OBJECTIVE: We aimed to examine the impact of self-focused AR and vicarious reinforcement on psychological predictors of behavior change during the COVID-19 pandemic. In addition, our study included measures of fear and message minimization to assess potential adverse reactions to the design interventions. METHODS: A between-subjects web-based experiment was conducted to compare the health perceptions of participants in self-focused AR and vicarious reinforcement design conditions to those in a control condition. Participants were randomly assigned to the control group or to an intervention condition (ie, self-focused AR, reinforcement, self-focus AR × reinforcement, and avatar). RESULTS: A total of 335 participants were included in the analysis. We found that participants who experienced self-focused AR and vicarious reinforcement scored higher in perceived threat severity (P=.03) and susceptibility (P=.01) when compared to the control. A significant indirect effect of self-focused AR and vicarious reinforcement on intention was found with perceived threat severity as a mediator (b=.06, 95% CI 0.02-0.12, SE .02). Self-focused AR and vicarious reinforcement did not result in higher levels of fear (P=.32) or message minimization (P=.42) when compared to the control. CONCLUSIONS: Augmenting one's reflection with vicarious reinforcement may be an effective strategy for health communication designers. While our study's results did not show adverse effects in regard to fear and message minimization, utilization of self-focused AR as a health communication strategy should be done with care due to the possible adverse effects of heightened levels of fear.


Assuntos
Realidade Aumentada , COVID-19 , Comunicação em Saúde , Internet , Pandemias , Percepção , Adulto , Medo , Feminino , Humanos , Intenção , Masculino , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...