Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Image Anal ; 87: 102813, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37120993

RESUMO

Histopathology is a crucial diagnostic tool in cancer and involves the analysis of gigapixel slides. Multiple instance learning (MIL) promises success in digital histopathology thanks to its ability to handle gigapixel slides and work with weak labels. MIL is a machine learning paradigm that learns the mapping between bags of instances and bag labels. It represents a slide as a bag of patches and uses the slide's weak label as the bag's label. This paper introduces distribution-based pooling filters that obtain a bag-level representation by estimating marginal distributions of instance features. We formally prove that the distribution-based pooling filters are more expressive than the classical point estimate-based counterparts, like 'max' and 'mean' pooling, in terms of the amount of information captured while obtaining bag-level representations. Moreover, we empirically show that models with distribution-based pooling filters perform equal to or better than those with point estimate-based pooling filters on distinct real-world MIL tasks defined on the CAMELYON16 lymph node metastases dataset. Our model with a distribution pooling filter achieves an area under the receiver operating characteristics curve value of 0.9325 (95% confidence interval: 0.8798 - 0.9743) in the tumor vs. normal slide classification task.


Assuntos
Algoritmos , Aprendizado de Máquina , Humanos , Metástase Linfática , Curva ROC
2.
Patterns (N Y) ; 3(12): 100642, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36569545

RESUMO

Pathologists diagnose prostate cancer by core needle biopsy. In low-grade and low-volume cases, they look for a few malignant glands out of hundreds within a core. They may miss a few malignant glands, resulting in repeat biopsies or missed therapeutic opportunities. This study developed a multi-resolution deep-learning pipeline to assist pathologists in detecting malignant glands in core needle biopsies of low-grade and low-volume cases. Analyzing a gland at multiple resolutions, our model exploited morphology and neighborhood information, which were crucial in prostate gland classification. We developed and tested our pipeline on the slides of a local cohort of 99 patients in Singapore. Besides, we made the images publicly available, becoming the first digital histopathology dataset of patients of Asian ancestry with prostatic carcinoma. Our multi-resolution classification model achieved an area under the receiver operating characteristic curve (AUROC) value of 0.992 (95% confidence interval [CI]: 0.985-0.997) in the external validation study, showing the generalizability of our multi-resolution approach.

3.
Patterns (N Y) ; 3(2): 100399, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35199060

RESUMO

Tumor purity is the percentage of cancer cells within a tissue section. Pathologists estimate tumor purity to select samples for genomic analysis by manually reading hematoxylin-eosin (H&E)-stained slides, which is tedious, time consuming, and prone to inter-observer variability. Besides, pathologists' estimates do not correlate well with genomic tumor purity values, which are inferred from genomic data and accepted as accurate for downstream analysis. We developed a deep multiple instance learning model predicting tumor purity from H&E-stained digital histopathology slides. Our model successfully predicted tumor purity in eight The Cancer Genome Atlas (TCGA) cohorts and a local Singapore cohort. The predictions were highly consistent with genomic tumor purity values. Thus, our model can be utilized to select samples for genomic analysis, which will help reduce pathologists' workload and decrease inter-observer variability. Furthermore, our model provided tumor purity maps showing the spatial variation within sections. They can help better understand the tumor microenvironment.

4.
Patterns (N Y) ; 3(2): 100447, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35199070

RESUMO

Oner, an early-career researcher, and Lee and Sung, group leaders, have developed a deep learning model for accurate prediction of the proportion of cancer cells within tumor tissue. This is a necessary step for precision oncology and target therapy in cancer. They talk about their view of data science and the evolution of pathology in the coming years.

5.
JAMA ; 318(22): 2199-2210, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29234806

RESUMO

Importance: Application of deep learning algorithms to whole-slide pathology images can potentially improve diagnostic accuracy and efficiency. Objective: Assess the performance of automated deep learning algorithms at detecting metastases in hematoxylin and eosin-stained tissue sections of lymph nodes of women with breast cancer and compare it with pathologists' diagnoses in a diagnostic setting. Design, Setting, and Participants: Researcher challenge competition (CAMELYON16) to develop automated solutions for detecting lymph node metastases (November 2015-November 2016). A training data set of whole-slide images from 2 centers in the Netherlands with (n = 110) and without (n = 160) nodal metastases verified by immunohistochemical staining were provided to challenge participants to build algorithms. Algorithm performance was evaluated in an independent test set of 129 whole-slide images (49 with and 80 without metastases). The same test set of corresponding glass slides was also evaluated by a panel of 11 pathologists with time constraint (WTC) from the Netherlands to ascertain likelihood of nodal metastases for each slide in a flexible 2-hour session, simulating routine pathology workflow, and by 1 pathologist without time constraint (WOTC). Exposures: Deep learning algorithms submitted as part of a challenge competition or pathologist interpretation. Main Outcomes and Measures: The presence of specific metastatic foci and the absence vs presence of lymph node metastasis in a slide or image using receiver operating characteristic curve analysis. The 11 pathologists participating in the simulation exercise rated their diagnostic confidence as definitely normal, probably normal, equivocal, probably tumor, or definitely tumor. Results: The area under the receiver operating characteristic curve (AUC) for the algorithms ranged from 0.556 to 0.994. The top-performing algorithm achieved a lesion-level, true-positive fraction comparable with that of the pathologist WOTC (72.4% [95% CI, 64.3%-80.4%]) at a mean of 0.0125 false-positives per normal whole-slide image. For the whole-slide image classification task, the best algorithm (AUC, 0.994 [95% CI, 0.983-0.999]) performed significantly better than the pathologists WTC in a diagnostic simulation (mean AUC, 0.810 [range, 0.738-0.884]; P < .001). The top 5 algorithms had a mean AUC that was comparable with the pathologist interpreting the slides in the absence of time constraints (mean AUC, 0.960 [range, 0.923-0.994] for the top 5 algorithms vs 0.966 [95% CI, 0.927-0.998] for the pathologist WOTC). Conclusions and Relevance: In the setting of a challenge competition, some deep learning algorithms achieved better diagnostic performance than a panel of 11 pathologists participating in a simulation exercise designed to mimic routine pathology workflow; algorithm performance was comparable with an expert pathologist interpreting whole-slide images without time constraints. Whether this approach has clinical utility will require evaluation in a clinical setting.


Assuntos
Neoplasias da Mama/patologia , Metástase Linfática/diagnóstico , Aprendizado de Máquina , Patologistas , Algoritmos , Feminino , Humanos , Metástase Linfática/patologia , Patologia Clínica , Curva ROC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...