Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Oncol ; 18(3): 726-742, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38225213

RESUMO

Prostate cancer is a frequent malignancy in older men and has a very high 5-year survival rate if diagnosed early. The prognosis is much less promising if the tumor has already spread outside the prostate gland. Targeted treatments mainly aim at blocking androgen receptor (AR) signaling and initially show good efficacy. However, tumor progression due to AR-dependent and AR-independent mechanisms is often observed after some time, and novel treatment strategies are urgently needed. Dysregulation of the PI3K/AKT/mTOR pathway in advanced prostate cancer and its implication in treatment resistance has been reported. We compared the impact of PI3K/AKT/mTOR pathway inhibitors with different selectivity profiles on in vitro cell proliferation and on caspase 3/7 activation as a marker for apoptosis induction, and observed the strongest effects in the androgen-sensitive prostate cancer cell lines VCaP and LNCaP. Combination treatment with the AR inhibitor darolutamide led to enhanced apoptosis in these cell lines, the effects being most pronounced upon cotreatment with the pan-PI3K inhibitor copanlisib. A subsequent transcriptomic analysis performed in VCaP cells revealed that combining darolutamide with copanlisib impacted gene expression much more than individual treatment. A comprehensive reversal of the androgen response and the mTORC1 transcriptional programs as well as a marked induction of DNA damage was observed. Next, an in vivo efficacy study was performed using the androgen-sensitive patient-derived prostate cancer (PDX) model LuCaP 35 and a superior efficacy was observed after the combined treatment with copanlisib and darolutamide. Importantly, immunohistochemistry analysis of these treated tumors showed increased apoptosis, as revealed by elevated levels of cleaved caspase 3 and Bcl-2-binding component 3 (BBC3). In conclusion, these data demonstrate that concurrent blockade of the PI3K/AKT/mTOR and AR pathways has superior antitumor efficacy and induces apoptosis in androgen-sensitive prostate cancer cell lines and PDX models.


Assuntos
Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-akt , Masculino , Humanos , Idoso , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Androgênicos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Caspase 3 , Androgênios , Serina-Treonina Quinases TOR/metabolismo , Neoplasias da Próstata/genética , Proliferação de Células , Apoptose , Linhagem Celular Tumoral
3.
Bioorg Med Chem ; 78: 117130, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36542958

RESUMO

PPAR gamma (PPARG) is a ligand activated transcription factor that regulates genes involved in inflammation, bone biology, lipid homeostasis, as well as a master regulator of adipogenesis and a potential lineage driver of luminal bladder cancer. While PPARG agonists lead to transcriptional activation of canonical target genes, inverse agonists have the opposite effect through inducing a transcriptionally repressive complex leading to repression of canonical target gene expression. While many agonists have been described and tested clinically, inverse agonists offer an underexplored avenue to modulate PPARG biology in vivo. Current inverse agonists lack favorable in vivo properties; herein we describe the discovery and characterization of a series of orally bioavailable 4-chloro-6-fluoroisophthalamides as covalent PPARG inverse-agonists, BAY-5516, BAY-5094, and BAY-9683. Structural studies of this series revealed distinct pre- and post-covalent binding positions, which led to the hypothesis that interactions in the pre-covalent conformation are primarily responsible for driving affinity, while interactions in the post-covalent conformation are more responsible for cellular functional effects by enhancing PPARG interactions with its corepressors. The need to simultaneously optimize for two distinct states may partially explain the steep SAR observed. Exquisite selectivity was achieved over related nuclear receptors in the subfamily due in part to a covalent warhead with low reactivity through an SNAr mechanism in addition to the specificity gained through covalent binding to a reactive cysteine uniquely positioned within the PPARG LBD. BAY-5516, BAY-5094, and BAY-9683 lead to pharmacodynamic regulation of PPARG target gene expression in vivo comparable to known inverse agonist SR10221 and represent new tools for future in vivo studies to explore their potential utility for treatment of disorders of hyperactivated PPARG including luminal bladder cancer and other disorders.


Assuntos
PPAR gama , Neoplasias da Bexiga Urinária , Humanos , PPAR gama/agonistas , Agonismo Inverso de Drogas , Agonistas PPAR-gama , Regulação da Expressão Gênica
4.
J Med Chem ; 65(21): 14843-14863, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36270630

RESUMO

The ligand-activated nuclear receptor peroxisome-proliferator-activated receptor-γ (PPARG or PPARγ) represents a potential target for a new generation of cancer therapeutics, especially in muscle-invasive luminal bladder cancer where PPARγ is a critical lineage driver. Here we disclose the discovery of a series of chloro-nitro-arene covalent inverse-agonists of PPARγ that exploit a benzoxazole core to improve interactions with corepressors NCOR1 and NCOR2. In vitro treatment of sensitive cell lines with these compounds results in the robust regulation of PPARγ target genes and antiproliferative effects. Despite their imperfect physicochemical properties, the compounds showed modest pharmacodynamic target regulation in vivo. Improvements to the in vitro potency and efficacy of BAY-4931 and BAY-0069 compared to those of previously described PPARγ inverse-agonists show that these compounds are novel tools for probing the in vitro biology of PPARγ inverse-agonism.


Assuntos
PPAR gama , PPAR gama/metabolismo , Ligantes
5.
J Med Chem ; 64(21): 15883-15911, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34699202

RESUMO

PIP4K2A is an insufficiently studied type II lipid kinase that catalyzes the conversion of phosphatidylinositol-5-phosphate (PI5P) into phosphatidylinositol 4,5-bisphosphate (PI4,5P2). The involvement of PIP4K2A/B in cancer has been suggested, particularly in the context of p53 mutant/null tumors. PIP4K2A/B depletion has been shown to induce tumor growth inhibition, possibly due to hyperactivation of AKT and reactive oxygen species-mediated apoptosis. Herein, we report the identification of the novel potent and highly selective inhibitors BAY-091 and BAY-297 of the kinase PIP4K2A by high-throughput screening and subsequent structure-based optimization. Cellular target engagement of BAY-091 and BAY-297 was demonstrated using cellular thermal shift assay technology. However, inhibition of PIP4K2A with BAY-091 or BAY-297 did not translate into the hypothesized mode of action and antiproliferative activity in p53-deficient tumor cells. Therefore, BAY-091 and BAY-297 serve as valuable chemical probes to study PIP4K2A signaling and its involvement in pathophysiological conditions such as cancer.


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Naftiridinas/química , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
6.
Front Pharmacol ; 12: 826112, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35153771

RESUMO

G-protein coupled receptors (GPCR) transduce extracellular stimuli into the cell interior and are thus centrally involved in almost all physiological-neuronal processes. This essential function and association with many diseases or pathological conditions explain why GPCRs are one of the priority targets in medical and pharmacological research, including structure determination. Despite enormous experimental efforts over the last decade, both the expression and purification of these membrane proteins remain elusive. This is attributable to specificities of each GPCR subtype and the finding of necessary experimental in vitro conditions, such as expression in heterologous cell systems or with accessory proteins. One of these specific GPCRs is the leucine-rich repeat domain (LRRD) containing GPCR 7 (LGR7), also termed relaxin family peptide receptor 1 (RXFP1). This receptor is characterized by a large extracellular region of around 400 amino acids constituted by several domains, a rare feature among rhodopsin-like (class A) GPCRs. In the present study, we describe the expression and purification of RXFP1, including the design of various constructs suitable for functional/biophysical studies and structure determination. Based on available sequence information, homology models, and modern biochemical and genetic tools, several receptor variations with different purification tags and fusion proteins were prepared and expressed in Sf9 cells (small-scale), followed by an analytic fluorescence-detection size-exclusion chromatography (F-SEC) to evaluate the constructs. The most promising candidates were expressed and purified on a large-scale, accompanied by ligand binding studies using surface plasmon resonance spectroscopy (SPR) and by determination of signaling capacities. The results may support extended studies on RXFP1 receptor constructs serving as targets for small molecule ligand screening or structural elucidation by protein X-ray crystallography or cryo-electron microscopy.

7.
ACS Omega ; 5(22): 13034-13041, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32548488

RESUMO

Lactate dehydrogenase A (LDHA) is frequently overexpressed in tumors, thereby sustaining high glycolysis rates, tumor growth, and chemoresistance. High-throughput screening resulted in the identification of phthalimide and dibenzofuran derivatives as novel lactate dehydrogenase inhibitors, selectively inhibiting the activity of the LDHA isoenzyme. Cocrystallization experiments confirmed target engagement in addition to demonstrating binding to a novel allosteric binding site present in all four LDHA subunits of the LDH5 homotetramer.

9.
Clin Cancer Res ; 25(4): 1404-1414, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30429199

RESUMO

PURPOSE: The catalytic function of BUB1 is required for chromosome arm resolution and positioning of the chromosomal passenger complex for resolution of spindle attachment errors and plays only a minor role in spindle assembly checkpoint activation. Here, we present the identification and preclinical pharmacologic profile of the first BUB1 kinase inhibitor with good bioavailability. EXPERIMENTAL DESIGN: The Bayer compound library was screened for BUB1 kinase inhibitors and medicinal chemistry efforts to improve target affinity and physicochemical and pharmacokinetic parameters resulting in the identification of BAY 1816032 were performed. BAY 1816032 was characterized for kinase selectivity, inhibition of BUB1 signaling, and inhibition of tumor cell proliferation alone and in combination with taxanes, ATR, and PARP inhibitors. Effects on tumor growth in vivo were evaluated using human triple-negative breast xenograft models. RESULTS: The highly selective compound BAY 1816032 showed long target residence time and induced chromosome mis-segregation upon combination with low concentrations of paclitaxel. It was synergistic or additive in combination with paclitaxel or docetaxel, as well as with ATR or PARP inhibitors in cellular assays. Tumor xenograft studies demonstrated a strong and statistically significant reduction of tumor size and excellent tolerability upon combination of BAY 1816032 with paclitaxel or olaparib as compared with the respective monotherapies. CONCLUSIONS: Our findings suggest clinical proof-of-concept studies evaluating BAY 1816032 in combination with taxanes or PARP inhibitors to enhance their efficacy and potentially overcome resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células HeLa , Humanos , Camundongos , Neoplasias/genética , Neoplasias/patologia , Ftalazinas/farmacologia , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Taxoides/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
J Med Chem ; 60(9): 4002-4022, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28402630

RESUMO

Bromodomains (BD) are readers of lysine acetylation marks present in numerous proteins associated with chromatin. Here we describe a dual inhibitor of the bromodomain and PHD finger (BRPF) family member BRPF2 and the TATA box binding protein-associated factors TAF1 and TAF1L. These proteins are found in large chromatin complexes and play important roles in transcription regulation. The substituted benzoisoquinolinedione series was identified by high-throughput screening, and subsequent structure-activity relationship optimization allowed generation of low nanomolar BRPF2 BD inhibitors with strong selectivity against BRPF1 and BRPF3 BDs. In addition, a strong inhibition of TAF1/TAF1L BD2 was measured for most derivatives. The best compound of the series was BAY-299, which is a very potent, dual inhibitor with an IC50 of 67 nM for BRPF2 BD, 8 nM for TAF1 BD2, and 106 nM for TAF1L BD2. Importantly, no activity was measured for BRD4 BDs. Furthermore, cellular activity was evidenced using a BRPF2- or TAF1-histone H3.3 or H4 interaction assay.


Assuntos
Histona Acetiltransferases/antagonistas & inibidores , Isoquinolinas/farmacologia , Proteínas Nucleares/antagonistas & inibidores , Fatores Associados à Proteína de Ligação a TATA/antagonistas & inibidores , Fator de Transcrição TFIID/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Animais , Proliferação de Células/efeitos dos fármacos , Chaperonas de Histonas , Humanos , Isomerismo , Isoquinolinas/química , Isoquinolinas/farmacocinética , Microssomos Hepáticos/efeitos dos fármacos , Estrutura Molecular , Relação Estrutura-Atividade
11.
PLoS One ; 6(12): e28428, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22164290

RESUMO

With 1.6 million casualties annually and 2 billion people being infected, tuberculosis is still one of the most pressing healthcare challenges. Here we report on the new computational docking algorithm FRIGATE which unites continuous local optimization techniques (conjugate gradient method) with an inherently discrete computational approach in forcefield computation, resulting in equal or better scoring accuracies than several benchmark docking programs. By utilizing FRIGATE for a virtual screen of the ZINC library against the Mycobacterium tuberculosis (Mtb) enzyme antigen 85C, we identified novel small molecule inhibitors of multiple drug-resistant Mtb, which bind in vitro to the catalytic site of antigen 85C.


Assuntos
Antituberculosos/farmacologia , Biologia Computacional/métodos , Mycobacterium tuberculosis/metabolismo , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Algoritmos , Antituberculosos/química , Proteínas de Bactérias/química , Sítios de Ligação , Domínio Catalítico , Química Farmacêutica/métodos , Desenho de Fármacos , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Reprodutibilidade dos Testes , Software , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
12.
Acta Crystallogr D Biol Crystallogr ; 64(Pt 4): 339-53, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18391401

RESUMO

As a key regulator of mitosis, the Ser/Thr protein polo-like kinase-1 (Plk-1) is a well validated drug target in cancer therapy. In order to enable structure-guided drug design, determination of the crystal structure of the kinase domain of Plk-1 was attempted. Using a multi-parallel cloning and expression approach, a set of length variants were identified which could be expressed in large amounts from insect cells and which could be purified to high purity. However, all attempts to crystallize these constructs failed. Crystals were ultimately obtained by generating designed ankyrin-repeat proteins (DARPins) selective for Plk-1 and using them for cocrystallization. Here, the first crystal structure of the kinase domain of wild-type apo Plk-1, in complex with DARPin 3H10, is presented, underlining the power of selective DARPins as crystallization tools. The structure was refined to 2.3 A resolution and shows the active conformation of Plk-1. It broadens the basis for modelling and cocrystallization studies for drug design. The binding epitope of 3H10 is rich in arginine, glutamine and lysine residues, suggesting that the DARPin enabled crystallization by masking a surface patch which is unfavourable for crystal contact formation. Based on the packing observed in the crystal, a truncated DARPin variant was designed which showed improved binding characteristics.


Assuntos
Anquirinas/química , Proteínas de Ciclo Celular/química , Proteínas Serina-Treonina Quinases/química , Proteínas Proto-Oncogênicas/química , Sequência de Aminoácidos , Calorimetria , Proteínas de Ciclo Celular/biossíntese , Proteínas de Ciclo Celular/isolamento & purificação , Clonagem Molecular , Cristalização , Coleta de Dados , Humanos , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/isolamento & purificação , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/isolamento & purificação , Proteínas Recombinantes/química , Quinase 1 Polo-Like
13.
Eur J Cell Biol ; 86(1): 37-50, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17157410

RESUMO

Initiation of eukaryotic DNA replication is achieved by the sequential binding of different proteins to origins of DNA replication. Using EGFP-tagged initiator proteins and immunofluorescence techniques we found that most of the ORC and the MCM subunits are localised at centrosomes and are colocalised with the polo-like protein kinase, Plk1. Yeast two-hybrid studies revealed interactions of Plk1 with the Mcm2 as well as the Orc2 protein. Co-immunoprecipitations showed an interaction of Plk1 with Mcm2 as well as interactions of gamma-tubulin with Mcm3 and Orc2, respectively. An in vitro phosphorylation assay showed that the Orc2 protein is a substrate of Plk1. Depletion of Orc2 and Mcm3 by siRNA leads to an inhibition of cell proliferation, an altered cell cycle distribution as well as to multinucleated cells with insufficiently organised microtubules. These results indicate an important role of the MCM and ORC proteins in mitosis besides their described role in the establishment of the pre-replicative complex.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Complexo de Reconhecimento de Origem/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular , Proliferação de Células , Centrômero/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Imunofluorescência , Proteínas de Fluorescência Verde , Camundongos , Componente 3 do Complexo de Manutenção de Minicromossomo , Mitose/genética , Mitose/fisiologia , Proteínas Nucleares/genética , Complexo de Reconhecimento de Origem/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Quinase 1 Polo-Like
14.
Proc Natl Acad Sci U S A ; 101(9): 2712-7, 2004 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-14981270

RESUMO

The N-terminal domain of the vaccinia virus protein E3L (Z alpha(E3L)) is essential for full viral pathogenicity in mice. It has sequence similarity to the high-affinity human Z-DNA-binding domains Z alpha(ADAR1) and Z alpha(DLM1). Here, we report the solution structure of Z alpha(E3L) and the chemical shift map of its interaction surface with Z-DNA. The global structure and the Z-DNA interaction surface of Z alpha(E3L) are very similar to the high-affinity Z-DNA-binding domains Z alpha(ADAR1) and Z alpha(DLM1). However, the key Z-DNA contacting residue Y48 of Z alpha(E3L) adopts a different side chain conformation in unbound Z alpha(E3L), which requires rearrangement for binding to Z-DNA. This difference suggests a molecular basis for the significantly lower in vitro affinity of Z alpha(E3L) to Z-DNA compared with its homologues.


Assuntos
DNA Forma Z/química , Proteínas de Ligação a RNA/química , Tirosina , Proteínas Virais/química , Sequência de Aminoácidos , Sítios de Ligação , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Conformação Proteica , Soluções
15.
J Mol Biol ; 327(1): 111-28, 2003 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-12614612

RESUMO

Eukaryotic cells coordinate chromosome duplication by the assembly of protein complexes at origins of DNA replication by sequential binding of member proteins of the origin recognition complex (ORC), CDC6, and minichromosome maintenance (MCM) proteins. These pre-replicative complexes (pre-RCs) are activated by cyclin-dependent kinases and DBF4/CDC7 kinase. Here, we carried out a comprehensive yeast two-hybrid screen to establish sequential interactions between two individual proteins of the mouse pre-RC that are probably required for the initiation of DNA replication. The studies revealed multiple interactions among ORC subunits and MCM proteins as well as interactions between individual ORC and MCM proteins. In particular CDC6 was found to bind strongly to ORC1 and ORC2, and to MCM7 proteins. DBF4 interacts with the subunits of ORC as well as with MCM proteins. It was also demonstrated that CDC7 binds to different ORC and MCM proteins. CDC45 interacts with ORC1 and ORC6, and weakly with MCM3, -6, and -7. The three subunits of the single-stranded DNA binding protein RPA show interactions with various ORC subunits as well as with several MCM proteins. The data obtained by yeast two-hybrid analysis were paradigmatically confirmed in synchronized murine FM3A cells by immunoprecipitation of the interacting partners. Some of the interactions were found to be cell-cycle-dependent; however, most of them were cell-cycle-independent. Altogether, 90 protein-protein interactions were detected in this study, 52 of them were found for the first time in any eukaryotic pre-RC. These data may help to understand the complex interplay of the components of the mouse pre-RC and should allow us to refine its structural architecture as well as its assembly in real time.


Assuntos
Replicação do DNA/fisiologia , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Origem de Replicação/fisiologia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Animais , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Humanos , Substâncias Macromoleculares , Camundongos , Componente 7 do Complexo de Manutenção de Minicromossomo , Proteínas Nucleares/metabolismo , Complexo de Reconhecimento de Origem , Testes de Precipitina , Ligação Proteica , Estrutura Quaternária de Proteína , Técnicas do Sistema de Duplo-Híbrido
16.
EMBO Rep ; 3(2): 147-52, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11818337

RESUMO

In mammals, sequence-specific termination of DNA replication within the ribosomal RNA genes is catalyzed by a defined DNA-protein complex that includes transcription termination factor I (TTF-I). Here we show that TTF-I acts as a polar contrahelicase contrary to the intrinsic 3' -->5' helicase activity of SV40 large T antigen. The contrahelicase activity requires binding of TTF-I to its cognate recognition site and the presence of an auxiliary GC-rich sequence, which is able to form a specific secondary structure. Mutations in the GC-rich sequence lead to a loss of folding into correct secondary structure and abrogate contrahelicase activity. The finding suggests that a specific interaction between the Sal box-bound TTF-I and the GC-rich sequence is essential for the inhibition of T antigen helicase. Analyses of N-terminally truncated mutants of TTF-I showed inhibition of helicase by the same domain of TTF-I, which is also responsible for replication fork arrest.


Assuntos
Proteínas de Bactérias , Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Sequência de Aminoácidos , Animais , Antígenos Transformantes de Poliomavirus/fisiologia , Linhagem Celular , Proteínas de Ligação a DNA/antagonistas & inibidores , Dados de Sequência Molecular , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...