Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Nat Med ; 30(6): 1636-1644, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38867077

RESUMO

Despite recent therapeutic advances, metastatic castration-resistant prostate cancer (mCRPC) remains lethal. Chimeric antigen receptor (CAR) T cell therapies have demonstrated durable remissions in hematological malignancies. We report results from a phase 1, first-in-human study of prostate stem cell antigen (PSCA)-directed CAR T cells in men with mCRPC. The starting dose level (DL) was 100 million (M) CAR T cells without lymphodepletion (LD), followed by incorporation of LD. The primary end points were safety and dose-limiting toxicities (DLTs). No DLTs were observed at DL1, with a DLT of grade 3 cystitis encountered at DL2, resulting in addition of a new cohort using a reduced LD regimen + 100 M CAR T cells (DL3). No DLTs were observed in DL3. Cytokine release syndrome of grade 1 or 2 occurred in 5 of 14 treated patients. Prostate-specific antigen declines (>30%) occurred in 4 of 14 patients, as well as radiographic improvements. Dynamic changes indicating activation of peripheral blood endogenous and CAR T cell subsets, TCR repertoire diversity and changes in the tumor immune microenvironment were observed in a subset of patients. Limited persistence of CAR T cells was observed beyond 28 days post-infusion. These results support future clinical studies to optimize dosing and combination strategies to improve durable therapeutic outcomes. ClinicalTrials.gov identifier NCT03873805 .


Assuntos
Antígenos de Neoplasias , Proteínas Ligadas por GPI , Imunoterapia Adotiva , Proteínas de Neoplasias , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/terapia , Neoplasias de Próstata Resistentes à Castração/imunologia , Neoplasias de Próstata Resistentes à Castração/patologia , Idoso , Pessoa de Meia-Idade , Antígenos de Neoplasias/imunologia , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Proteínas Ligadas por GPI/imunologia , Proteínas de Neoplasias/imunologia , Receptores de Antígenos Quiméricos/imunologia , Metástase Neoplásica , Linfócitos T/imunologia , Linfócitos T/transplante , Antígeno Prostático Específico/sangue
2.
Bioinformatics ; 40(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38876979

RESUMO

MOTIVATION: Next-generation sequencing libraries are constructed with numerous synthetic constructs such as sequencing adapters, barcodes, and unique molecular identifiers. Such sequences can be essential for interpreting results of sequencing assays, and when they contain information pertinent to an experiment, they must be processed and analyzed. RESULTS: We present a tool called splitcode, that enables flexible and efficient parsing, interpreting, and editing of sequencing reads. This versatile tool facilitates simple, reproducible preprocessing of reads from libraries constructed for a large array of single-cell and bulk sequencing assays. AVAILABILITY AND IMPLEMENTATION: The splitcode program is available at http://github.com/pachterlab/splitcode.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Software , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Biblioteca Gênica
3.
Genome Biol Evol ; 16(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38922665

RESUMO

Molecular studies of animal regeneration typically focus on conserved genes and signaling pathways that underlie morphogenesis. To date, a holistic analysis of gene expression across animals has not been attempted, as it presents a suite of problems related to differences in experimental design and gene homology. By combining orthology analyses with a novel statistical method for testing gene enrichment across large data sets, we are able to test whether tissue regeneration across animals shares transcriptional regulation. We applied this method to a meta-analysis of six publicly available RNA-Seq data sets from diverse examples of animal regeneration. We recovered 160 conserved orthologous gene clusters, which are enriched in structural genes as opposed to those regulating morphogenesis. A breakdown of gene presence/absence provides limited support for the conservation of pathways typically implicated in regeneration, such as Wnt signaling and cell pluripotency pathways. Such pathways are only conserved if we permit large amounts of paralog switching through evolution. Overall, our analysis does not support the hypothesis that a shared set of ancestral genes underlie regeneration mechanisms in animals. After applying the same method to heat shock studies and getting similar results, we raise broader questions about the ability of comparative RNA-Seq to reveal conserved gene pathways across deep evolutionary relationships.


Assuntos
RNA-Seq , Regeneração , Animais , Regeneração/genética , Evolução Molecular , Análise de Sequência de RNA
4.
Biophys J ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38715358

RESUMO

The advent of high-throughput transcriptomics provides an opportunity to advance mechanistic understanding of transcriptional processes and their connections to cellular function at an unprecedented, genome-wide scale. These transcriptional systems, which involve discrete stochastic events, are naturally modeled using chemical master equations (CMEs), which can be solved for probability distributions to fit biophysical rates that govern system dynamics. While CME models have been used as standards in fluorescence transcriptomics for decades to analyze single-species RNA distributions, there are often no closed-form solutions to CMEs that model multiple species, such as nascent and mature RNA transcript counts. This has prevented the application of standard likelihood-based statistical methods for analyzing high-throughput, multi-species transcriptomic datasets using biophysical models. Inspired by recent work in machine learning to learn solutions to complex dynamical systems, we leverage neural networks and statistical understanding of system distributions to produce accurate approximations to a steady-state bivariate distribution for a model of the RNA life cycle that includes nascent and mature molecules. The steady-state distribution to this simple model has no closed-form solution and requires intensive numerical solving techniques: our approach reduces likelihood evaluation time by several orders of magnitude. We demonstrate two approaches, whereby solutions are approximated by 1) learning the weights of kernel distributions with constrained parameters or 2) learning both weights and scaling factors for parameters of kernel distributions. We show that our strategies, denoted by kernel weight regression and parameter-scaled kernel weight regression, respectively, enable broad exploration of parameter space and can be used in existing likelihood frameworks to infer transcriptional burst sizes, RNA splicing rates, and mRNA degradation rates from experimental transcriptomic data.

5.
bioRxiv ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38617255

RESUMO

Standard single-cell RNA-sequencing analysis (scRNA-seq) workflows consist of converting raw read data into cell-gene count matrices through sequence alignment, followed by analyses including filtering, highly variable gene selection, dimensionality reduction, clustering, and differential expression analysis. Seurat and Scanpy are the most widely-used packages implementing such workflows, and are generally thought to implement individual steps similarly. We investigate in detail the algorithms and methods underlying Seurat and Scanpy and find that there are, in fact, considerable differences in the outputs of Seurat and Scanpy. The extent of differences between the programs is approximately equivalent to the variability that would be introduced in benchmarking scRNA-seq datasets by sequencing less than 5% of the reads or analyzing less than 20% of the cell population. Additionally, distinct versions of Seurat and Scanpy can produce very different results, especially during parts of differential expression analysis. Our analysis highlights the need for users of scRNA-seq to carefully assess the tools on which they rely, and the importance of developers of scientific software to prioritize transparency, consistency, and reproducibility for their tools.

6.
Bioinformatics ; 40(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38579259

RESUMO

MOTIVATION: Understanding the structure of sequenced fragments from genomics libraries is essential for accurate read preprocessing. Currently, different assays and sequencing technologies require custom scripts and programs that do not leverage the common structure of sequence elements present in genomics libraries. RESULTS: We present seqspec, a machine-readable specification for libraries produced by genomics assays that facilitates standardization of preprocessing and enables tracking and comparison of genomics assays. AVAILABILITY AND IMPLEMENTATION: The specification and associated seqspec command line tool is available at https://www.doi.org/10.5281/zenodo.10213865.


Assuntos
Genômica , Software
7.
Bioinformatics ; 40(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38377393

RESUMO

MOTIVATION: Eukaryotic linear motifs (ELMs), or Short Linear Motifs, are protein interaction modules that play an essential role in cellular processes and signaling networks and are often involved in diseases like cancer. The ELM database is a collection of manually curated motif knowledge from scientific papers. It has become a crucial resource for investigating motif biology and recognizing candidate ELMs in novel amino acid sequences. Users can search amino acid sequences or UniProt Accessions on the ELM resource web interface. However, as with many web services, there are limitations in the swift processing of large-scale queries through the ELM web interface or API calls, and, therefore, integration into protein function analysis pipelines is limited. RESULTS: To allow swift, large-scale motif analyses on protein sequences using ELMs curated in the ELM database, we have extended the gget suite of Python and command line tools with a new module, gget elm, which does not rely on the ELM server for efficiently finding candidate ELMs in user-submitted amino acid sequences and UniProt Accessions. gget elm increases accessibility to the information stored in the ELM database and allows scalable searches for motif-mediated interaction sites in the amino acid sequences. AVAILABILITY AND IMPLEMENTATION: The manual and source code are available at https://github.com/pachterlab/gget.


Assuntos
Proteínas , Software , Motivos de Aminoácidos , Bases de Dados de Proteínas , Proteínas/química , Sequência de Aminoácidos
8.
bioRxiv ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38168363

RESUMO

There are an estimated 300,000 mammalian viruses from which infectious diseases in humans may arise. They inhabit human tissues such as the lungs, blood, and brain and often remain undetected. Efficient and accurate detection of viral infection is vital to understanding its impact on human health and to make accurate predictions to limit adverse effects, such as future epidemics. The increasing use of high-throughput sequencing methods in research, agriculture, and healthcare provides an opportunity for the cost-effective surveillance of viral diversity and investigation of virus-disease correlation. However, existing methods for identifying viruses in sequencing data rely on and are limited to reference genomes or cannot retain single-cell resolution through cell barcode tracking. We introduce a method that accurately and rapidly detects viral sequences in bulk and single-cell transcriptomics data based on highly conserved amino acid domains, which enables the detection of RNA viruses covering up to 1012 virus species. The analysis of viral presence and host gene expression in parallel at single-cell resolution allows for the characterization of host viromes and the identification of viral tropism and host responses. We applied our method to identify putative novel viruses in rhesus macaque PBMC data that display cell type specificity and whose presence correlates with altered host gene expression.

9.
Bioinform Adv ; 4(1): vbad181, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38213823

RESUMO

Summary: Barcode-based sequence census assays utilize custom or random oligonucloetide sequences to label various biological features, such as cell-surface proteins or CRISPR perturbations. These assays all rely on barcode quantification, a task that is complicated by barcode design and technical noise. We introduce a modular approach to quantifying barcodes that achieves speed and memory improvements over existing tools. We also introduce a set of quality control metrics, and accompanying tool, for validating barcode designs. Availability and implementation: https://github.com/pachterlab/kb_python, https://github.com/pachterlab/qcbc.

10.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38045414

RESUMO

The term "RNA-seq" refers to a collection of assays based on sequencing experiments that involve quantifying RNA species from bulk tissue, from single cells, or from single nuclei. The kallisto, bustools, and kb-python programs are free, open-source software tools for performing this analysis that together can produce gene expression quantification from raw sequencing reads. The quantifications can be individualized for multiple cells, multiple samples, or both. Additionally, these tools allow gene expression values to be classified as originating from nascent RNA species or mature RNA species, making this workflow amenable to both cell-based and nucleus-based assays. This protocol describes in detail how to use kallisto and bustools in conjunction with a wrapper, kb-python, to preprocess RNA-seq data.

12.
Bull Math Biol ; 85(11): 114, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828255

RESUMO

The serial nature of reactions involved in the RNA life-cycle motivates the incorporation of delays in models of transcriptional dynamics. The models couple a transcriptional process to a fairly general set of delayed monomolecular reactions with no feedback. We provide numerical strategies for calculating the RNA copy number distributions induced by these models, and solve several systems with splicing, degradation, and catalysis. An analysis of single-cell and single-nucleus RNA sequencing data using these models reveals that the kinetics of nuclear export do not appear to require invocation of a non-Markovian waiting time.


Assuntos
Conceitos Matemáticos , Modelos Biológicos , Processos Estocásticos , Simulação por Computador , RNA , Cadeias de Markov , Algoritmos
13.
Dev Cell ; 58(21): 2338-2358.e5, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37673062

RESUMO

Mammalian organs exhibit distinct physiology, disease susceptibility, and injury responses between the sexes. In the mouse kidney, sexually dimorphic gene activity maps predominantly to proximal tubule (PT) segments. Bulk RNA sequencing (RNA-seq) data demonstrated that sex differences were established from 4 and 8 weeks after birth under gonadal control. Hormone injection studies and genetic removal of androgen and estrogen receptors demonstrated androgen receptor (AR)-mediated regulation of gene activity in PT cells as the regulatory mechanism. Interestingly, caloric restriction feminizes the male kidney. Single-nuclear multiomic analysis identified putative cis-regulatory regions and cooperating factors mediating PT responses to AR activity in the mouse kidney. In the human kidney, a limited set of genes showed conserved sex-linked regulation, whereas analysis of the mouse liver underscored organ-specific differences in the regulation of sexually dimorphic gene expression. These findings raise interesting questions on the evolution, physiological significance, disease, and metabolic linkage of sexually dimorphic gene activity.


Assuntos
Rim , Receptores Androgênicos , Animais , Feminino , Humanos , Masculino , Camundongos , Expressão Gênica , Regulação da Expressão Gênica , Rim/metabolismo , Mamíferos/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Caracteres Sexuais
15.
bioRxiv ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37745403

RESUMO

Multimodal, single-cell genomics technologies enable simultaneous capture of multiple facets of DNA and RNA processing in the cell. This creates opportunities for transcriptome-wide, mechanistic studies of cellular processing in heterogeneous cell types, with applications ranging from inferring kinetic differences between cells, to the role of stochasticity in driving heterogeneity. However, current methods for determining cell types or 'clusters' present in multimodal data often rely on ad hoc or independent treatment of modalities, and assumptions ignoring inherent properties of the count data. To enable interpretable and consistent cell cluster determination from multimodal data, we present meK-Means (mechanistic K-Means) which integrates modalities and learns underlying, shared biophysical states through a unifying model of transcription. In particular, we demonstrate how meK-Means can be used to cluster cells from unspliced and spliced mRNA count modalities. By utilizing the causal, physical relationships underlying these modalities, we identify shared transcriptional kinetics across cells, which induce the observed gene expression profiles, and provide an alternative definition for 'clusters' through the governing parameters of cellular processes.

16.
bioRxiv ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37745572

RESUMO

We describe a workflow for preprocessing a wide variety of single-cell genomics data types. The approach is based on parsing of machine-readable seqspec assay specifications to customize inputs for kb-python, which uses kallisto and bustools to catalog reads, error correct barcodes, and count reads. The universal preprocessing method is implemented in the Python package cellatlas that is available for download at: https://github.com/cellatlas/cellatlas/.

17.
Cell Syst ; 14(10): 822-843.e22, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37751736

RESUMO

Recent experimental developments in genome-wide RNA quantification hold considerable promise for systems biology. However, rigorously probing the biology of living cells requires a unified mathematical framework that accounts for single-molecule biological stochasticity in the context of technical variation associated with genomics assays. We review models for a variety of RNA transcription processes, as well as the encapsulation and library construction steps of microfluidics-based single-cell RNA sequencing, and present a framework to integrate these phenomena by the manipulation of generating functions. Finally, we use simulated scenarios and biological data to illustrate the implications and applications of the approach.


Assuntos
Modelos Biológicos , Biologia de Sistemas , Processos Estocásticos , RNA , Genômica
18.
bioRxiv ; 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37645732

RESUMO

Exploratory spatial data analysis (ESDA) can be a powerful approach to understanding single-cell genomics datasets, but it is not yet part of standard data analysis workflows. In particular, geospatial analyses, which have been developed and refined for decades, have yet to be fully adapted and applied to spatial single-cell analysis. We introduce the Voyager platform, which systematically brings the geospatial ESDA tradition to (spatial) -omics, with local, bivariate, and multivariate spatial methods not yet commonly applied to spatial -omics, united by a uniform user interface. Using Voyager, we showcase biological insights that can be derived with its methods, such as biologically relevant negative spatial autocorrelation. Underlying Voyager is the SpatialFeatureExperiment data structure, which combines Simple Feature with SingleCellExperiment and AnnData to represent and operate on geometries bundled with gene expression data. Voyager has comprehensive tutorials demonstrating ESDA built on GitHub Actions to ensure reproducibility and scalability, using data from popular commercial technologies. Voyager is implemented in both R/Bioconductor and Python/PyPI, and features compatibility tests to ensure that both implementations return consistent results.

19.
Cell Genom ; 3(8): 100374, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37601972

RESUMO

Spatial transcriptomic technologies have the potential to reveal critical relationships between the function of genes and cells and their spatial organization. Here, we provide a sharing model for spatial transcriptomics data with the aim of establishing a set of primary data and metadata needed to reproduce analyses and facilitate computational methods development.

20.
PLoS Comput Biol ; 19(8): e1011288, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37590228

RESUMO

Dimensionality reduction is standard practice for filtering noise and identifying relevant features in large-scale data analyses. In biology, single-cell genomics studies typically begin with reduction to 2 or 3 dimensions to produce "all-in-one" visuals of the data that are amenable to the human eye, and these are subsequently used for qualitative and quantitative exploratory analysis. However, there is little theoretical support for this practice, and we show that extreme dimension reduction, from hundreds or thousands of dimensions to 2, inevitably induces significant distortion of high-dimensional datasets. We therefore examine the practical implications of low-dimensional embedding of single-cell data and find that extensive distortions and inconsistent practices make such embeddings counter-productive for exploratory, biological analyses. In lieu of this, we discuss alternative approaches for conducting targeted embedding and feature exploration to enable hypothesis-driven biological discovery.


Assuntos
Análise de Dados , Genômica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...