Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ESC Heart Fail ; 10(2): 858-871, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36444917

RESUMO

AIMS: Familial hypertrophic cardiomyopathy (HCM) is the most common form of inherited cardiac disease. It is characterized by myocardial hypertrophy and diastolic dysfunction, and can lead to severe heart failure, arrhythmias, and sudden cardiac death. Cardiac fibrosis, defined by excessive accumulation of extracellular matrix (ECM) components, is central to the pathophysiology of HCM. The ECM proteoglycan lumican is increased during heart failure and cardiac fibrosis, including HCM, yet its role in HCM remains unknown. We provide an in-depth assessment of lumican in clinical and experimental HCM. METHODS: Left ventricular (LV) myectomy specimens were collected from patients with hypertrophic obstructive cardiomyopathy (n = 15), and controls from hearts deemed unsuitable for transplantation (n = 8). Hearts were harvested from a mouse model of HCM; Myh6 R403Q mice administered cyclosporine A and wild-type littermates (n = 8-10). LV tissues were analysed for mRNA and protein expression. Patient myectomy or mouse mid-ventricular sections were imaged using confocal microscopy, direct stochastic optical reconstruction microscopy (dSTORM), or electron microscopy. Human foetal cardiac fibroblasts (hfCFBs) were treated with recombinant human lumican (n = 3) and examined using confocal microscopy. RESULTS: Lumican mRNA was increased threefold in HCM patients (P < 0.05) and correlated strongly with expression of collagen I (R2  = 0.60, P < 0.01) and III (R2  = 0.58, P < 0.01). Lumican protein was increased by 40% in patients with HCM (P < 0.01) and correlated with total (R2  = 0.28, P = 0.05) and interstitial (R2  = 0.30, P < 0.05) fibrosis. In mice with HCM, lumican mRNA increased fourfold (P < 0.001), and lumican protein increased 20-fold (P < 0.001) in insoluble ECM lysates. Lumican and fibrillar collagen were located together throughout fibrotic areas in HCM patient tissue, with increased co-localization measured in patients and mice with HCM (patients: +19%, P < 0.01; mice: +13%, P < 0.01). dSTORM super-resolution microscopy was utilized to image interstitial ECM which had yet to undergo overt fibrotic remodelling. In these interstitial areas, collagen I deposits located closer to (-15 nm, P < 0.05), overlapped more frequently with (+7.3%, P < 0.05) and to a larger degree with (+5.6%, P < 0.05) lumican in HCM. Collagen fibrils in such deposits were visualized using electron microscopy. The effect of lumican on collagen fibre formation was demonstrated by adding lumican to hfCFB cultures, resulting in thicker (+53.8 nm, P < 0.001), longer (+345.9 nm, P < 0.001), and fewer (-8.9%, P < 0.001) collagen fibres. CONCLUSIONS: The ECM proteoglycan lumican is increased in HCM and co-localizes with fibrillar collagen throughout areas of fibrosis in HCM. Our data suggest that lumican may promote formation of thicker collagen fibres in HCM.


Assuntos
Cardiomiopatias , Cardiomiopatia Hipertrófica , Insuficiência Cardíaca , Humanos , Animais , Camundongos , Lumicana/fisiologia , Cardiomiopatia Hipertrófica/genética , Insuficiência Cardíaca/metabolismo , Colágeno Tipo I , Fibrose , RNA Mensageiro
2.
Commun Biol ; 5(1): 1392, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539599

RESUMO

Heart failure is a major cause of morbidity and mortality worldwide, and can result from pressure overload, where cardiac remodelling is characterized by cardiomyocyte hypertrophy and death, fibrosis, and inflammation. In failing hearts, transforming growth factor (TGF)ß drives cardiac fibroblast (CFB) to myofibroblast differentiation causing excessive extracellular matrix production and cardiac remodelling. New strategies to target pathological TGFß signalling in heart failure are needed. Here we show that the secreted glycoprotein ADAMTSL3 regulates TGFß in the heart. We found that Adamtsl3 knock-out mice develop exacerbated cardiac dysfunction and dilatation with increased mortality, and hearts show increased TGFß activity and CFB activation after pressure overload by aortic banding. Further, ADAMTSL3 overexpression in cultured CFBs inhibits TGFß signalling, myofibroblast differentiation and collagen synthesis, suggesting a cardioprotective role for ADAMTSL3 by regulating TGFß activity and CFB phenotype. These results warrant future investigation of the potential beneficial effects of ADAMTSL3 in heart failure.


Assuntos
Insuficiência Cardíaca , Remodelação Ventricular , Camundongos , Animais , Camundongos Knockout , Dilatação , Remodelação Ventricular/genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Fator de Crescimento Transformador beta
3.
Sci Rep ; 11(1): 19757, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611183

RESUMO

Fibrosis accompanies most heart diseases and is associated with adverse patient outcomes. Transforming growth factor (TGF)ß drives extracellular matrix remodelling and fibrosis in the failing heart. Some members of the ADAMTSL (a disintegrin-like and metalloproteinase domain with thrombospondin type 1 motifs-like) family of secreted glycoproteins bind to matrix microfibrils, and although their function in the heart remains largely unknown, they are suggested to regulate TGFß activity. The aims of this study were to determine ADAMTSL2 levels in failing hearts, and to elucidate the role of ADAMTSL2 in fibrosis using cultured human cardiac fibroblasts (CFBs). Cardiac ADAMTSL2 mRNA was robustly increased in human and experimental heart failure, and mainly expressed by fibroblasts. Over-expression and treatment with extracellular ADAMTSL2 in human CFBs led to reduced TGFß production and signalling. Increased ADAMTSL2 attenuated myofibroblast differentiation, with reduced expression of the signature molecules α-smooth muscle actin and osteopontin. Finally, ADAMTSL2 mitigated the pro-fibrotic CFB phenotypes, proliferation, migration and contractility. In conclusion, the extracellular matrix-localized glycoprotein ADAMTSL2 was upregulated in fibrotic and failing hearts of patients and mice. We identified ADAMTSL2 as a negative regulator of TGFß in human cardiac fibroblasts, inhibiting myofibroblast differentiation and pro-fibrotic properties.


Assuntos
Proteínas ADAMTS/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Transdução de Sinais , Proteínas ADAMTS/genética , Animais , Biomarcadores , Diferenciação Celular/genética , Modelos Animais de Doenças , Suscetibilidade a Doenças , Proteínas da Matriz Extracelular/genética , Regulação da Expressão Gênica , Insuficiência Cardíaca/patologia , Humanos , Camundongos , Ratos , Fator de Crescimento Transformador beta/metabolismo
4.
Cardiology ; 145(3): 187-198, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31968347

RESUMO

INTRODUCTION: The heart undergoes myocardial remodeling during progression to heart failure following pressure overload. Myocardial remodeling is associated with structural and functional changes in cardiac myocytes, fibroblasts, and the extracellular matrix (ECM) and is accompanied by inflammation. Cardiac fibrosis, the accumulation of ECM molecules including collagens and collagen cross-linking, contributes both to impaired systolic and diastolic function. Insufficient mechanistic insight into what regulates cardiac fibrosis during pathological conditions has hampered therapeutic so-lutions. Lumican (LUM) is an ECM-secreted proteoglycan known to regulate collagen fibrillogenesis. Its expression in the heart is increased in clinical and experimental heart failure. Furthermore, LUM is important for survival and cardiac remodeling following pressure overload. We have recently reported that total lack of LUM increased mortality and left ventricular dilatation, and reduced collagen expression and cross-linking in LUM knockout mice after aortic banding (AB). Here, we examined the effect of LUM on myocardial remodeling and function following pressure overload in a less extreme mouse model, where cardiac LUM level was reduced to 50% (i.e., moderate loss of LUM). METHODS AND RESULTS: mRNA and protein levels of LUM were reduced to 50% in heterozygous LUM (LUM+/-) hearts compared to wild-type (WT) controls. LUM+/- mice were subjected to AB. There was no difference in survival between LUM+/- and WT mice post-AB. Echocardiography revealed no striking differences in cardiac geometry between LUM+/- and WT mice 2, 4, and 6 weeks post-AB, although markers of diastolic dysfunction indicated better function in LUM+/- mice. LUM+/- hearts revealed reduced cardiac fibrosis assessed by histology. In accordance, the expression of collagen I and III, the main fibrillar collagens in the heart, and other ECM molecules central to fibrosis, i.e. including periostin and fibronectin, was reduced in the hearts of LUM+/- compared to WT 6 weeks post-AB. We found no differences in collagen cross-linking between LUM+/- and WT mice post-AB, as assessed by histology and qPCR. CONCLUSIONS: Moderate lack of LUM attenuated cardiac fibrosis and improved diastolic dysfunction following pressure overload in mice, adding to the growing body of evidence suggesting that LUM is a central profibrotic molecule in the heart that could serve as a potential therapeutic target.


Assuntos
Insuficiência Cardíaca/metabolismo , Ventrículos do Coração/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Lumicana/fisiologia , Miofibroblastos/metabolismo , Animais , Colágeno/metabolismo , Modelos Animais de Doenças , Ecocardiografia , Matriz Extracelular/metabolismo , Ventrículos do Coração/patologia , Lumicana/genética , Masculino , Camundongos , Camundongos Knockout , Miofibroblastos/patologia , Remodelação Ventricular
5.
PLoS One ; 13(7): e0201422, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30052659

RESUMO

Pressure overload of the heart leads to cardiac remodeling that may progress into heart failure, a common, morbid and mortal condition. Increased mechanistic insight into remodeling is instrumental for development of novel heart failure treatment. Cardiac remodeling comprises cardiomyocyte hypertrophic growth, extracellular matrix alterations including fibrosis, and inflammation. Fibromodulin is a small leucine-rich proteoglycan that regulates collagen fibrillogenesis. Fibromodulin is expressed in the cardiac extracellular matrix, however its role in the heart remains largely unknown. We investigated fibromodulin levels in myocardial biopsies from heart failure patients and mice, subjected fibromodulin knock-out (FMOD-KO) mice to pressure overload by aortic banding, and overexpressed fibromodulin in cultured cardiomyocytes and cardiac fibroblasts using adenovirus. Fibromodulin was 3-10-fold upregulated in hearts of heart failure patients and mice. Both cardiomyocytes and cardiac fibroblasts expressed fibromodulin, and its expression was increased by pro-inflammatory stimuli. Without stress, FMOD-KO mice showed no cardiac phenotype. Upon aortic banding, left ventricles of FMOD-KO mice developed mildly exacerbated hypertrophic remodeling compared to wild-type mice, with increased cardiomyocyte size and altered infiltration of leukocytes. There were no differences in mortality, left ventricle dilatation, dysfunction or expression of heart failure markers. Although collagen amount and cross-linking were comparable in FMOD-KO and wild-type, overexpression of fibromodulin in cardiac fibroblasts in vitro decreased their migratory capacity and expression of fibrosis-associated molecules, i.e. the collagen-cross linking enzyme lysyl oxidase, transglutaminase 2 and periostin. In conclusion, despite a robust fibromodulin upregulation in clinical and experimental heart failure, FMOD-KO mice showed a relatively mild hypertrophic phenotype. In cultured cardiac fibroblasts, fibromodulin has anti-fibrotic effects.


Assuntos
Cardiomegalia/metabolismo , Matriz Extracelular/metabolismo , Fibromodulina/biossíntese , Insuficiência Cardíaca/metabolismo , Miocárdio/metabolismo , Animais , Biomarcadores , Cardiomegalia/genética , Cardiomegalia/patologia , Modelos Animais de Doenças , Matriz Extracelular/genética , Matriz Extracelular/patologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibromodulina/genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia
6.
Sci Rep ; 6: 39394, 2016 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-27991551

RESUMO

In our lab we study neurogenesis and the development of brain tumors. We work towards treatment strategies for glioblastoma and towards using autologous neural stem cells for tissue regeneration strategies for brain damage and neurodegenerative disorders. It has been our policy to try to establish living cell cultures from all human biopsy material that we obtain. We hypothesized that small pieces of brain tissue could be cryopreserved and that live neural stem cells could be recovered at a later time. DMSO has been shown to possess a remarkable ability to diffuse through cell membranes and pass into cell interiors. Its chemical properties prevent the formation of damaging ice crystals thus allowing cell storage at or below -180 C. We report here a protocol for successful freezing of small pieces of tissue derived from human brain and human brain tumours. Virtually all specimens could be successfully revived. Assays of phenotype and behaviour show that the cell cultures derived were equivalent to those cultures previously derived from fresh tissue.


Assuntos
Encéfalo/citologia , Células-Tronco/citologia , Adulto , Neoplasias Encefálicas/patologia , Técnicas de Cultura de Células , Membrana Celular/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Criopreservação/métodos , Congelamento , Humanos , Pessoa de Meia-Idade , Neurogênese/fisiologia , Bancos de Tecidos , Adulto Jovem
7.
Mol Cancer ; 14: 121, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26081429

RESUMO

BACKGROUND: Glioblastomas are invasive therapy resistant brain tumors with extremely poor prognosis. The Glioma initiating cell (GIC) population contributes to therapeutic resistance and tumor recurrence. Targeting GIC-associated gene candidates could significantly impact GBM tumorigenicity. Here, we investigate a protein kinase, PBK/TOPK as a candidate for regulating growth, survival and in vivo tumorigenicity of GICs. METHODS: PBK is highly upregulated in GICs and GBM tissues as shown by RNA and protein analyses. We knocked down PBK using shRNA vectors and inhibited the function of PBK protein with a pharmacological PBK inhibitor, HITOPK-032. We assessed viability, tumorsphere formation and apoptosis in three patient derived GIC cultures. RESULTS: Gene knockdown of PBK led to decreased viability and sphere formation and in one culture an increase in apoptosis. Treatment of cells with inhibitor HITOPK-032 (5 µM and 10 µM) almost completely abolished growth and elicited a large increase in apoptosis in all three cultures. HI-TOPK-032 treatment (5 mg/kg and 10 mg/kg bodyweight) in vivo resulted in diminished growth of experimentally induced subcutaneous GBM tumors in mice. We also carried out multi-culture assays of cell survival to investigate the relative effects on GICs compared with the normal neural stem cells (NSCs) and their differentiated counterparts. Normal NSCs seemed to withstand treatment slightly better than the GICs. CONCLUSION: Our study of identification and functional validation of PBK suggests that this candidate can be a promising molecular target for GBM treatment.


Assuntos
Glioblastoma/metabolismo , Glioblastoma/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Técnicas de Silenciamento de Genes , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , Indolizinas/farmacologia , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Inibidores de Proteínas Quinases/farmacologia , Quinoxalinas/farmacologia , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Esferoides Celulares , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
PLoS One ; 8(8): e71334, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23967194

RESUMO

The discovery of stem cells in the adult human brain has revealed new possible scenarios for treatment of the sick or injured brain. Both clinical use of and preclinical research on human adult neural stem cells have, however, been seriously hampered by the fact that it has been impossible to passage these cells more than a very few times and with little expansion of cell numbers. Having explored a number of alternative culturing conditions we here present an efficient method for the establishment and propagation of human brain stem cells from whatever brain tissue samples we have tried. We describe virtually unlimited expansion of an authentic stem cell phenotype. Pluripotency proteins Sox2 and Oct4 are expressed without artificial induction. For the first time multipotency of adult human brain-derived stem cells is demonstrated beyond tissue boundaries. We characterize these cells in detail in vitro including microarray and proteomic approaches. Whilst clarification of these cells' behavior is ongoing, results so far portend well for the future repair of tissues by transplantation of an adult patient's own-derived stem cells.


Assuntos
Encéfalo/citologia , Técnicas de Cultura de Células/métodos , Células-Tronco Multipotentes/citologia , Adulto , Biomarcadores/metabolismo , Diferenciação Celular , Células Clonais/citologia , Neurônios Dopaminérgicos/citologia , Regulação da Expressão Gênica , Humanos , Cariotipagem , Pessoa de Meia-Idade , Células-Tronco Multipotentes/metabolismo , Fenótipo , Proteômica , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...