Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 21(9): 1439-1448, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35793464

RESUMO

Antibody-drug conjugate (ADC) research has typically focused on the release of highly potent cytotoxic agents to achieve antitumor efficacy. However, recently approved ADCs trastuzumab deruxtecan and sacituzumab govitecan release lower-potency topoisomerase inhibitors. This has prompted interest in ADCs that release lower-potency cytotoxic drugs to potentially enhance therapeutic index and reduce unwanted toxicity. Pyrrolobenzodiazepine (PBD) dimer ADCs have been widely investigated in human clinical trials, which have focused on high-potency PBDs. In this study, we evaluated five ADCs that release the low-potency PBD dimer SG3650. The relatively low clogD for this agent facilitated higher drug-to-antibody ratio (DAR) conjugation without the need for antibody engineering or functionalization of the drug. The rank order of potency for DAR 2 site-specific ADCs (conjugated at the C239i position) matched the order for the corresponding free drugs in vitro. Despite free drug SG3650 being inactive in vivo, the DAR 2 ADCs derived from the corresponding drug-linker SG3584 showed antitumor efficacy in solid (anti-HER2) and hematologic (anti-CD22) xenograft models. Antitumor activity could be enhanced by conjugating SG3584 to trastuzumab at higher DARs of 4 and 8 and by adjusting dosing and schedule. Higher-DAR conjugates were stable and displayed good rat pharmacokinetic profiles as measured by ELISA and LC/MS-MS. A single intravenous dose of isotype control SG3584 DAR 2 ADC resulted in no mortality in rats or monkeys at doses of up to 25 and 30 mg/kg, respectively. These findings suggest that further investigations of low-potency PBD dimers in ADCs that target hematologic and solid tumors are warranted.


Assuntos
Antineoplásicos , Imunoconjugados , Animais , Antineoplásicos/farmacologia , Benzodiazepinas/farmacologia , Linhagem Celular Tumoral , Humanos , Imunoconjugados/uso terapêutico , Pirróis , Ratos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Mol Oncol ; 14(1): 54-68, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31736230

RESUMO

cMet is a well-characterized oncogene that is the target of many drugs including small molecule and biologic pathway inhibitors, and, more recently, antibody-drug conjugates (ADCs). However, the clinical benefit from cMet-targeted therapy has been limited. We developed a novel cMet-targeted 'third-generation' ADC, TR1801-ADC, that was optimized at different levels including specificity, stability, toxin-linker, conjugation site, and in vivo efficacy. Our nonagonistic cMet antibody was site-specifically conjugated to the pyrrolobenzodiazepine (PBD) toxin-linker tesirine and has picomolar activity in cancer cell lines derived from different solid tumors including lung, colorectal, and gastric cancers. The potency of our cMet ADC is independent of MET gene copy number, and its antitumor activity was high not only in high cMet-expressing cell lines but also in medium-to-low cMet cell lines (40 000-90 000 cMet/cell) in which a cMet ADC with tubulin inhibitor payload was considerably less potent. In vivo xenografts with low-medium cMet expression were also very responsive to TR1801-ADC at a single dose, while a cMet ADC using a tubulin inhibitor showed a substantially reduced efficacy. Furthermore, TR1801-ADC had excellent efficacy with significant antitumor activity in 90% of tested patient-derived xenograft models of gastric, colorectal, and head and neck cancers: 7 of 10 gastric models, 4 of 10 colorectal cancer models, and 3 of 10 head and neck cancer models showed complete tumor regression after a single-dose administration. Altogether, TR1801-ADC is a new generation cMet ADC with best-in-class preclinical efficacy and good tolerability in rats.


Assuntos
Antineoplásicos/farmacologia , Benzodiazepinas/farmacologia , Imunoconjugados/farmacologia , Neoplasias/tratamento farmacológico , Oncogenes/imunologia , Proteínas Proto-Oncogênicas c-met/imunologia , Pirróis/farmacologia , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos/toxicidade , Neoplasias do Sistema Biliar/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Imunoconjugados/uso terapêutico , Imunoconjugados/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/imunologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Ratos , Ratos Sprague-Dawley , Neoplasias Gástricas/metabolismo , Análise Serial de Tecidos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Bioconjug Chem ; 30(9): 2340-2348, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31380623

RESUMO

The normal electron-demand Diels-Alder (DA) cycloaddition is a classic transformation routinely used in synthesis; however, applications in biological systems are limited. Here, we report a spiro[2.4]hepta-4,6-diene-containing noncanonical amino acid (SCpHK) capable of efficient incorporation into antibodies and subsequent coupling with maleimide via a DA reaction. SCpHK was stable throughout protein expression in mammalian cells and enabled covalent attachment of maleimide drug-linkers yielding DA antibody-drug conjugates (DA-ADCs) with nearly quantitative conversion in a one-step process. The uncatalyzed DA reaction between SCpHK and maleimide in aqueous buffer was rapid (1.8-5.4 M-1 s-1), and the antibody-drug adduct was stable in rat serum for at least 1 week at 37 °C. Anti-EphA2 DA-ADCs containing AZ1508 or SG3249 maleimide drug-linkers were potent inhibitors of tumor growth in PC3 tumor models in vivo. The DA bioconjugation strategy described here represents a simple method to produce site-specific and stable ADCs with maleimide drug-linkers.


Assuntos
Imunoconjugados/química , Maleimidas/química , Animais , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , Reação de Cicloadição , Humanos , Imunoconjugados/farmacologia , Modelos Moleculares , Células PC-3 , Conformação Proteica , Compostos de Espiro/química
4.
Eur J Med Chem ; 179: 591-607, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31279293

RESUMO

Antibody-drug conjugates (ADCs) containing pyrrolobenzodiazepine (PBD) dimers are currently being evaluated in human oncology clinical trials with encouraging results. To further improve the therapeutic window, next-generation PBD drug-linker design has focused on the inclusion of additional tumor-selective triggers and use of lower-potency PBDs. ß-Glucuronidase is a well-known target for discovery prodrugs due to increased presence in tumor cells and microenvironment. In this study, a ß-glucuronidase cleavable cap was investigated at the PBD N10-position and compared with corresponding free imine ADCs. SG3600 (glucuronide) ADCs showed in vitro and in vivo efficacy/tolerability comparable to SG3400 (imine) ADCs, and good 50% inhibitory concentration differentials were observed in vitro between control non-antigen-targeted ADCs and targeted ADCs. Dependence on ß-glucuronidase for SG3600 activity was demonstrated through CRISPRCas9 knockdown studies and addition of exogenous ß-glucuronidase. SG3600 showed better serum stability, improved conjugation efficiency and was able to reach high drug-to-antibody ratio without aggregation.


Assuntos
Benzodiazepinas/farmacologia , Dipeptídeos/farmacologia , Glucuronídeos/farmacologia , Imunoconjugados/farmacologia , Pirróis/farmacologia , Benzodiazepinas/síntese química , Benzodiazepinas/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dipeptídeos/química , Relação Dose-Resposta a Droga , Glucuronídeos/química , Humanos , Imunoconjugados/química , Estrutura Molecular , Pirróis/síntese química , Pirróis/química , Relação Estrutura-Atividade
5.
Curr Top Med Chem ; 19(9): 741-752, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30931859

RESUMO

Background & Introduction: Pyrrolobenzodiazepine (PBD) dimers are highly potent DNA cross-linking agents used as warheads in Antibody Drug Conjugates (ADCs) for cancer therapy. We propose to investigate the correlation existing between the lipophilicity of those molecules and their activity (both in vitro and in vivo) as well as any effect observed during conjugation. MATERIALS AND METHODS: Reaction progress was monitored by Thin-Layer Chromatography (TLC) using Merck Kieselgel 60 F254 silica gel, with a fluorescent indicator on aluminium plates. Visualisation of TLC was achieved with UV light or iodine vapour unless otherwise stated. Flash chromatography was performed using Merck Kieselgel 60 F254 silica gel. RESULTS: We have successfully designed and synthesized a novel PBD warhead (SG3312) with enhanced physicochemical properties. The warhead also displayed increased potency in vitro. After overcoming some epimerization issues, the synthesis of enantiomerically pure payload was achieved (SG3259) and fulfilled our criteria for a simplified and more efficient conjugation. No addition of propylene glycol was required, and high DAR and excellent monomeric purity were achieved. CONCLUSION: The ADC (Herceptin-maia-SG3259) has been shown to release the active warhead (SG3312) upon exposure to Cathepsin B and demonstrated encouraging activity both in vitro and in vivo.


Assuntos
Antineoplásicos/farmacologia , Benzodiazepinas/farmacologia , Pirróis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Benzodiazepinas/síntese química , Benzodiazepinas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia em Camada Fina , Dimerização , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Géis/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Pirróis/síntese química , Pirróis/química , Dióxido de Silício/química , Relação Estrutura-Atividade
6.
Clin Cancer Res ; 23(19): 5858-5868, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28630216

RESUMO

Purpose: To use preclinical models to identify a dosing schedule that improves tolerability of highly potent pyrrolobenzodiazepine dimers (PBDs) antibody drug conjugates (ADCs) without compromising antitumor activity.Experimental Design: A series of dose-fractionation studies were conducted to investigate the pharmacokinetic drivers of safety and efficacy of PBD ADCs in animal models. The exposure-activity relationship was investigated in mouse xenograft models of human prostate cancer, breast cancer, and gastric cancer by comparing antitumor activity after single and fractionated dosing with tumor-targeting ADCs conjugated to SG3249, a potent PBD dimer. The exposure-tolerability relationship was similarly investigated in rat and monkey toxicology studies by comparing tolerability, as assessed by survival, body weight, and organ-specific toxicities, after single and fractionated dosing with ADCs conjugated to SG3249 (rats) or SG3400, a structurally related PBD (monkeys).Results: Observations of similar antitumor activity in mice treated with single or fractionated dosing suggests that antitumor activity of PBD ADCs is more closely related to total exposure (AUC) than peak drug concentrations (Cmax). In contrast, improved survival and reduced toxicity in rats and monkeys treated with a fractionated dosing schedule suggests that tolerability of PBD ADCs is more closely associated with Cmax than AUC.Conclusions: We provide the first evidence that fractionated dosing can improve preclinical tolerability of at least some PBD ADCs without compromising efficacy. These findings suggest that preclinical exploration of dosing schedule could be an important clinical strategy to improve the therapeutic window of highly potent ADCs and should be investigated further. Clin Cancer Res; 23(19); 5858-68. ©2017 AACR.


Assuntos
Benzodiazepinas/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Imunoconjugados/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Pirróis/administração & dosagem , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Benzodiazepinas/química , Benzodiazepinas/imunologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Haplorrinos , Humanos , Imunoconjugados/química , Imunoconjugados/imunologia , Masculino , Camundongos , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Pirróis/química , Pirróis/imunologia , Ratos , Índice Terapêutico , Trastuzumab/administração & dosagem , Trastuzumab/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
SLAS Discov ; 22(4): 418-424, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28296537

RESUMO

The Hedgehog pathway is a key developmental signaling pathway but is also implicated in many types of cancer. The extracellular signaling protein Sonic hedgehog (Shh) requires dual lipidation for functional signaling, whereby N-terminal palmitoylation is performed by the enzyme Hedgehog acyltransferase (Hhat). Hhat is an attractive target for small-molecule inhibition to arrest Hedgehog signaling, and methods for assaying Hhat activity are central to understanding its function. However, all existing assays to quantify lipidation of peptides suffer limitations, such as safety hazards, high costs, extensive manual handling, restriction to stopped-assay measurements, or indirect assessment of lipidation. To address these limitations, we developed a microfluidic mobility shift assay (MSA) to analyze Shh palmitoylation. MSA allowed separation of fluorescently labeled Shh amine-substrate and palmitoylated Shh amide-product peptides based on differences in charge and hydrodynamic radius, coupled with online fluorescence intensity measurements for quantification. The MSA format was employed to study Hhat-catalyzed reactions, investigate Hhat kinetics, and determine small-molecule inhibitor IC50 values. Both real-time and stopped assays were performed, with the latter achieved via addition of excess unlabeled Shh peptide. The MSA format therefore allows direct and real-time fluorescence-based measurement of acylation and represents a powerful alternative technique in the study of N-lipidation.


Assuntos
Aciltransferases/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética/métodos , Proteínas Hedgehog/metabolismo , Microfluídica/métodos , Processamento de Proteína Pós-Traducional , Aciltransferases/antagonistas & inibidores , Aciltransferases/genética , Sequência de Aminoácidos , Ensaio de Desvio de Mobilidade Eletroforética/instrumentação , Ensaios Enzimáticos , Inibidores Enzimáticos/farmacologia , Células HEK293 , Proteínas Hedgehog/genética , Humanos , Cinética , Lipoilação/efeitos dos fármacos , Microfluídica/instrumentação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
Bioorg Med Chem Lett ; 27(5): 1154-1158, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28188066

RESUMO

A novel pyrrolobenzodiazepine dimer payload, SG3227, was rationally designed based on the naturally occurring antitumour compound sibiromycin. SG3227 was synthesized from a dimeric core in an efficient fashion. An unexpected room temperature Diels-Alder reaction occurred during the final step of the synthesis and was circumvented by use of an iodoacetamide conjugation moiety in place of a maleimide. The payload was successfully conjugated to trastuzumab and the resulting ADC exhibited potent activity against a HER2-expressing human cancer cell line in vitro.


Assuntos
Aminoglicosídeos/química , Antineoplásicos/química , Benzodiazepinas/química , Imunoconjugados/química , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Humanos , Técnicas In Vitro
9.
ACS Med Chem Lett ; 7(11): 983-987, 2016 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-27882195

RESUMO

Pyrrolobenzodiazepine dimers are an emerging class of warhead in the field of antibody-drug conjugates (ADCs). Tesirine (SG3249) was designed to combine potent antitumor activity with desirable physicochemical properties such as favorable hydrophobicity and improved conjugation characteristics. One of the reactive imines was capped with a cathepsin B-cleavable valine-alanine linker. A robust synthetic route was developed to allow the production of tesirine on clinical scale, employing a flexible, convergent strategy. Tesirine was evaluated in vitro both in stochastic and engineered ADC constructs and was confirmed as a potent and versatile payload. The conjugation of tesirine to anti-DLL3 rovalpituzumab has resulted in rovalpituzumab-tesirine (Rova-T), currently under evaluation for the treatment of small cell lung cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...