Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36984926

RESUMO

In this work, we demonstrated the thermal analysis of different flip-chip bonding designs for high power GaN HEMT developed for power electronics applications, such as power converters or photonic driver applications, with large gate periphery and chip size, as well as an Au metal heat-spreading layer deposited on top of a planarized dielectric/passivation layer above the active region. The Au bump patterns can be designed with high flexibility to provide more efficient heat dissipation from the large GaN HEMT chips to an AlN package substrate heat sink with no constraint in the alignment between the HEMT cells and the thermal conduction bumps. Steady-state thermal simulations were conducted to study the channel temperatures of GaN HEMTs with various Au bump patterns at different levels of current and voltage loadings, and the results were compared with the conventional face-up GaN die bonding on an AlN package substrate. The simulations were started from a single finger isolated HEMT cell and then extended to multiple fingers HEMT cells (total gate width > 40 mm) to investigate the "thermal cross-talk" effect from neighboring devices. Thermal analysis of the GaN HEMT under pulse operation was also performed to better reflect the actual conditions in power conversion or pulsed laser driver applications. Our analysis provides a combinational assessment of power GaN HEMT dies under a working condition (e.g., 1MHz, 25% duty cycle) with different flip chip packaging schemes. The analysis indicated that the channel temperature rise (∆T) of a HEMT cell in operation can be reduced by 44~46% by changing from face-up die bonding to a flip-chip bonding scheme with an optimized bump pattern design.

2.
Opt Express ; 30(26): 47553-47566, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558682

RESUMO

The fabrication processes of high-speed oxide-confined single-mode (SM)-vertical-cavity surface-emitting lasers (VCSELs) are complex, costly, and often held back by reliability and yield issues, which substantially set back the high-volume processing and mass commercialization of SM-VCSELs in datacom or other applications. In this article, we report the effects of Al2O3 passivation films deposited by atomic layer deposition (ALD) on the mesa sidewalls of high-speed 850-nm SM-VCSELs. The ALD-deposited film alleviates the trapping of carriers by sidewall defects and is an effective way to improve the performance of SM-VCSELs. The ALD-passivated SM-VCSELs showed statistically significant static performance improvements and reached a believed to be record-breaking SM-modulation bandwidth of 29.1 GHz. We also propose an improved microwave small-signal equivalent circuit model for SM-VCSELs that accounts for the losses attributed to the mesa sidewalls. These findings demonstrate that ALD passivation can mitigate processing-induced surface damage, enhance the performance of SM-VCSELs, and enable mass production of high-quality SM-VCSELs for mid- to long-reach optical interconnects.

3.
Nanoscale Res Lett ; 17(1): 90, 2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36114432

RESUMO

This study conducts comprehensive performance analyses of a commercial photonic-crystal surface-emitting laser (PCSEL) via small-signal measurement and the bit-error-rate test. Meanwhile, the radio frequency characteristics of the PCSEL are unveiled for the first time. Compared to the vertical-cavity surface-emitting lasers, the PCSEL shows great potential for a broader optical bandwidth that is benefited from the high optical-confinement factor. A maximum bandwidth of around 2.32 GHz is experimentally observed when the PCSEL was biased at 340 mA. Moreover, a theoretical calculation was applied to shed light on the characteristics of the small-signal measurement, providing a deep insight into the corresponding intrinsic response model. The signal transmission capability of the PCSEL was investigated as well. The maximum bit rate and corresponding rise time transmitted at 500 Mbps are 1.2 Gbps and 186.16 ps, respectively. Thus, a high-speed PCSEL can be realised with a shrunk form factor, serving as a promising candidate for the next-generation light sources in high-speed optical communication.

4.
Opt Express ; 28(21): 30748-30759, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33115069

RESUMO

This experiment presents dynamic behaviors between the operating current and the optical beam images of vertical-cavity surface-emitting lasers (VCSELs) with two different aperture diameters of 3 µm (single-mode) and 5 µm (multi-mode). These VCSELs exhibit complex optical phenomena under current injection such as thermal effects, modal competition, carrier distribution, and laser coherence which make the light field distribution difficult to predict. In this report, the DC properties, optical spectrum, and optical images were measured together at different operating currents to accurately evaluate the characteristics of the lasers. Unlike previous works, the variations of the far-field angle were precisely evaluated by the side-mode-suppression ratio (SMSR) of the optical spectrum. In addition to commonly used transform functions such as the Gaussian beam formula, the SMSR provides another tool for the judgment of far-field divergence which could prevent inaccurate analysis. Moreover, the impact of thermal lensing was calculated by the DC measurement and demonstrated by the far-field measurement at high injection current. Through this experiment, the interaction between the injection carrier, thermal lens effect, and current spreading was described as fully as possible.

5.
Opt Express ; 25(14): 16347-16363, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28789140

RESUMO

For high-speed optical OFDM transmission applications, a comprehensive comparison of the homemade multi-/few-/single-transverse mode (MM/FM/SM) vertical cavity surface emitting laser (VCSEL) chips is performed. With microwave probe, the direct encoding of pre-leveled 16-QAM OFDM data and transmission over 100-m-long OM4 multi-mode-fiber (MMF) are demonstrated for intra-datacenter applications. The MM VCSEL chip with the largest emission aperture of 11 µm reveals the highest differential quantum efficiency which provides the highest optical power of 8.67 mW but exhibits the lowest encodable bandwidth of 21 GHz. In contrast, the SM VCSEL chip fabricated with the smallest emission aperture of only 3 µm provides the highest 3-dB encoding bandwidth up to 23 GHz at a cost of slight heat accumulation. After optimization, with the trade-off set between the receiving signal-to-noise ratio (SNR) and bandwidth, the FM VCSEL chip guarantees the highest optical OFDM transmission bit rate of 96 Gbit/s under back-to-back case with its strongest throughput. Among three VCSEL chips, the SM VCSEL chip with nearly modal-dispersion free feature is treated as the best candidate for carrying the pre-leveled 16-QAM OFDM data over 100-m OM4-MMF with same material structure but exhibits different oxide-layer confined gain cross-sections with one another at 80-Gbit/s with the smallest receiving power penalty of 1.77 dB.

6.
Nanoscale ; 8(3): 1322-6, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26689266

RESUMO

The successful integration of the strain-driven nanoscale phase boundary of BiFeO3 onto a silicon substrate is demonstrated with extraordinary ferroelectricity and ferromagnetism. The detailed strain history is delineated through a reciprocal space mapping technique. We have found that a distorted monoclinic phase forms prior to a tetragonal-like phase, a phenomenon which may correlates with the thermal strain induced during the growth process.

7.
Nanoscale Res Lett ; 9(1): 551, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25324706

RESUMO

TiN thin films were deposited on MgO (100) substrates at different substrate temperatures using rf sputtering with Ar/N2 ratio of about 10. At 700°C, the growth rate of TiN was approximately 0.05 µm/h. The structural and electrical properties of TiN thin films were characterized with x-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Hall measurements. For all deposition conditions, XRD results show that the TiN films can be in an epitaxy with MgO with cube-on-cube orientation relationship of (001)TiN // (001)MgO and [100]TiN // [100]MgO. TEM with selected-area electron diffraction pattern verifies the epitaxial growth of the TiN films on MgO. SEM and AFM show that the surface of the TiN film is very smooth with roughness approximately 0.26 nm. The minimum resistivity of the films can be as low as 45 µΩ cm.

8.
Nanoscale Res Lett ; 9(1): 204, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24855462

RESUMO

In x Al1-x N films were deposited on Si(100) substrate using metal-organic molecular beam epitaxy. We investigated the effect of the trimethylindium/trimethylaluminum (TMIn/TMAl) flow ratios on the structural, morphological, and optical properties of In x Al1-x N films. Surface morphologies and microstructure of the In x Al1-x N films were measured by atomic force microscopy, scanning electron microscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM), respectively. Optical properties of all films were evaluated using an ultraviolet/visible/infrared (UV/Vis/IR) reflection spectrophotometer. XRD and TEM results indicated that In x Al1-x N films were preferentially oriented in the c-axis direction. Besides, the growth rates of In x Al1-x N films were measured at around 0.6 µm/h in average. Reflection spectrum shows that the optical absorption of the In x Al1-x N films redshifts with an increase in the In composition.

9.
J Phys Condens Matter ; 25(12): 125801, 2013 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-23449009

RESUMO

The microstructure of semipolar [Formula: see text] ZnO deposited on (112) LaAlO3/(La,Sr)(Al,Ta)O3 was investigated by transmission electron microscopy. The ZnO shows an in-plane epitaxial relationship of [Formula: see text] with oxygen-face sense polarity. The misfit strain along [Formula: see text] and [Formula: see text] is relieved through the formation of misfit dislocations with the Burgers vectors [Formula: see text] and [Formula: see text], respectively. The line defects in the semipolar ZnO are predominantly perfect dislocations, and the dislocation density decreases with increasing ZnO thickness as a result of dislocation reactions. Planar defects were observed to lie in the M-plane and extend along 〈0001〉, whereas basal stacking faults were rarely found.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...