Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Viruses ; 15(1)2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36680246

RESUMO

Multiple lineages of SARS-CoV-2 have been identified featuring distinct sets of genetic changes that confer to the virus higher transmissibility and ability to evade existing immunity. The continuous evolution of SARS-CoV-2 may pose challenges for current treatment options and diagnostic tools. In this study, we have first evaluated the performance of the 14 WHO-recommended real-time reverse transcription (RT)-PCR assays currently in use for the detection of SARS-CoV-2 and found that only one assay has reduced performance against Omicron. We then developed a new duplex real-time RT-PCR assay based on the amplification of two ultra-conserved elements present within the SARS-CoV-2 genome. The new duplex assay successfully detects all of the tested SARS-CoV-2 variants of concern (including Omicron sub-lineages BA.4 and BA.5) from both clinical and wastewater samples with high sensitivity and specificity. The assay also functions as a one-step droplet digital RT-PCR assay. This new assay, in addition to clinical testing, could be adopted in surveillance programs for the routine monitoring of SARS-CoV-2's presence in a population in wastewater samples. Positive results with our assay in conjunction with negative results from an Omicron-specific assay may provide timely indication of the emergence of a novel SARS-CoV-2 variant in a certain community and thereby aid public health interventions.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Reversa , Águas Residuárias , COVID-19/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real , Teste para COVID-19
2.
Sci Total Environ ; 857(Pt 3): 159378, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36272475

RESUMO

This study aimed to investigate the bacterial diversity and the background level of antibiotic resistance in two freshwater ecosystems with low anthropogenic impact in order to evaluate the presence of natural antimicrobial resistance in these areas and its potential to spread downstream. Water samples from a pre-Alpine and an Apennine river (Variola and Tiber, respectively) were collected in three different sampling campaigns and bacterial diversity was assessed by 16S sequencing, while the presence of bacteria resistant to five antibiotics was screened using a culturable approach. Overall bacterial load was higher in the Tiber River compared with the Variola River. Furthermore, the study revealed the presence of resistant bacteria, especially the Tiber River showed, for each sampling, the presence of resistance to all antibiotics tested, while for the Variola River, the detected resistance was variable, comprising two or more antibiotics. Screening of two resistance genes on a total of one hundred eighteen bacterial isolates from the two rivers showed that blaTEM, conferring resistance to ß-lactam antibiotics, was dominant and present in ~58 % of isolates compared to only ~9 % for mefA/E conferring resistance to macrolides. Moreover, ß-lactam resistance was detected in various isolates showing also resistance to additional antibiotics such as macrolides, aminoglycosides and tetracyclines. These observations would suggest the presence of co-resistant bacteria even in non-anthropogenic environments and this resistance may spread from the environment to humans and/or animals.


Assuntos
Genes Bacterianos , Varíola , Humanos , Animais , Ecossistema , Varíola/genética , Efeitos Antropogênicos , Resistência Microbiana a Medicamentos/genética , Antibacterianos/farmacologia , Água Doce , Bactérias/genética , Macrolídeos
3.
J Clin Med ; 11(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36233559

RESUMO

The gut has been proposed as a potential alternative entry route for SARS-CoV-2. This was mainly based on the high levels of SARS-CoV-2 receptor expressed in the gastrointestinal (GI) tract, the observations of GI disorders (such as diarrhea) in some COVID-19 patients and the detection of SARS-CoV-2 RNA in feces. However, the underlying mechanisms remain poorly understood. It has been proposed that SARS-CoV-2 can productively infect enterocytes, damaging the intestinal barrier and contributing to inflammatory response, which might lead to GI manifestations, including diarrhea. Here, we report a methodological approach to assess the evidence supporting the sequence of events driving SARS-CoV-2 enteric infection up to gut adverse outcomes. Exploring evidence permits to highlight knowledge gaps and current inconsistencies in the literature and to guide further research. Based on the current insights on SARS-CoV-2 intestinal infection and transmission, we then discuss the potential implication on clinical practice, including on long COVID. A better understanding of the GI implication in COVID-19 is still needed to improve disease management and could help identify innovative therapies or preventive actions targeting the GI tract.

4.
J Clin Med ; 11(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36143044

RESUMO

Alteration in gut microbiota has been associated with COVID-19. However, the underlying mechanisms remain poorly understood. Here, we outlined three potential interconnected mechanistic pathways leading to gut dysbiosis as an adverse outcome following SARS-CoV-2 presence in the gastrointestinal tract. Evidence from the literature and current uncertainties are reported for each step of the different pathways. One pathway investigates evidence that intestinal infection by SARS-CoV-2 inducing intestinal inflammation alters the gut microbiota. Another pathway links the binding of viral S protein to angiotensin-converting enzyme 2 (ACE2) to the dysregulation of this receptor, essential in intestinal homeostasis-notably for amino acid metabolism-leading to gut dysbiosis. Additionally, SARS-CoV-2 could induce gut dysbiosis by infecting intestinal bacteria. Assessing current evidence within the Adverse Outcome Pathway framework justifies confidence in the proposed mechanisms to support disease management and permits the identification of inconsistencies and knowledge gaps to orient further research.

5.
J Clin Med ; 11(15)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35956081

RESUMO

Addressing factors modulating COVID-19 is crucial since abundant clinical evidence shows that outcomes are markedly heterogeneous between patients. This requires identifying the factors and understanding how they mechanistically influence COVID-19. Here, we describe how eleven selected factors (age, sex, genetic factors, lipid disorders, heart failure, gut dysbiosis, diet, vitamin D deficiency, air pollution and exposure to chemicals) influence COVID-19 by applying the Adverse Outcome Pathway (AOP), which is well-established in regulatory toxicology. This framework aims to model the sequence of events leading to an adverse health outcome. Several linear AOPs depicting pathways from the binding of the virus to ACE2 up to clinical outcomes observed in COVID-19 have been developed and integrated into a network offering a unique overview of the mechanisms underlying the disease. As SARS-CoV-2 infectibility and ACE2 activity are the major starting points and inflammatory response is central in the development of COVID-19, we evaluated how those eleven intrinsic and extrinsic factors modulate those processes impacting clinical outcomes. Applying this AOP-aligned approach enables the identification of current knowledge gaps orientating for further research and allows to propose biomarkers to identify of high-risk patients. This approach also facilitates expertise synergy from different disciplines to address public health issues.

6.
Molecules ; 27(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35956778

RESUMO

The SARS-CoV-2 variant Omicron is characterized, among others, by more than 30 amino acid changes occurring on the spike glycoprotein with respect to the original SARS-CoV-2 spike protein. We report a comprehensive analysis of the effects of the Omicron spike amino acid changes in the interaction with human antibodies, obtained by modeling them into selected publicly available resolved 3D structures of spike-antibody complexes and investigating the effects of these mutations at structural level. We predict that the interactions of Omicron spike with human antibodies can be either negatively or positively affected by amino acid changes, with a predicted total loss of interactions only in a few complexes. Moreover, our analysis applied also to the spike-ACE2 interaction predicts that these amino acid changes may increase Omicron transmissibility. Our approach can be used to better understand SARS-CoV-2 transmissibility, detectability, and epidemiology and represents a model to be adopted also in the case of other variants.


Assuntos
COVID-19 , SARS-CoV-2 , Aminoácidos/genética , Enzima de Conversão de Angiotensina 2 , Humanos , Mutação , Peptidil Dipeptidase A/metabolismo , Glicoproteína da Espícula de Coronavírus
7.
Bioinform Adv ; 2(1): vbac030, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669346

RESUMO

Summary: Properly and effectively managing reference datasets is an important task for many bioinformatics analyses. Refgenie is a reference asset management system that allows users to easily organize, retrieve and share such datasets. Here, we describe the integration of refgenie into the Galaxy platform. Server administrators are able to configure Galaxy to make use of reference datasets made available on a refgenie instance. In addition, a Galaxy Data Manager tool has been developed to provide a graphical interface to refgenie's remote reference retrieval functionality. A large collection of reference datasets has also been made available using the CVMFS (CernVM File System) repository from GalaxyProject.org, with mirrors across the USA, Canada, Europe and Australia, enabling easy use outside of Galaxy. Availability and implementation: The ability of Galaxy to use refgenie assets was added to the core Galaxy framework in version 22.01, which is available from https://github.com/galaxyproject/galaxy under the Academic Free License version 3.0. The refgenie Data Manager tool can be installed via the Galaxy ToolShed, with source code managed at https://github.com/BlankenbergLab/galaxy-tools-blankenberg/tree/main/data_managers/data_manager_refgenie_pull and released using an MIT license. Access to existing data is also available through CVMFS, with instructions at https://galaxyproject.org/admin/reference-data-repo/. No new data were generated or analyzed in support of this research.

8.
J Clin Virol ; 152: 105191, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35640400

RESUMO

OBJECTIVES: The aim of this study was to develop a RT-PCR assay for the specific detection of the SARS-CoV-2 Omicron Variant of Concern (VOC) as a rapid alternative to sequencing. METHODS: A RT-PCR was designed in silico and then validated using characterised clinical samples containing Omicron (both BA.1 and BA.2 lineages) and the Omicron synthetic RNA genome. As negative controls, SARS-CoV-2 positive clinical samples collected in May 2020, and synthetic RNA genomes of the isolate Wuhan Hu-1 and of the Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Kappa (B.1.617.1), Iota (B.1.526), Epsilon (B.1.429) and Delta (B.1.617.2) SARS-CoV-2 VOC were used. RESULTS: Experiments performed using as templates the synthetic RNA genomes demonstrate the high specificity of the PCR-method for the SARS-CoV-2 Omicron. Despite the synthetic RNAs were used at high copy numbers, specific signal was mainly detected with the Omicron synthetic genome. Only a non-specific late signal was detected using the Alpha variant genome, but these results were considered negligible as Alpha VOC has been replaced by the Delta and it is not circulating anymore in the world. Using our method, we confirmed the presence of Omicron on clinical samples containing this variant but not of other SARS-CoV-2 lineages. The method is highly sensitive and can detect up to 1 cp of the Omicron virus per µl. CONCLUSIONS: The method presented here, in combination with other methods in use for detection of SARS-CoV-2, can be used for an early identification of Omicron.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , RNA Viral/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/genética , Sensibilidade e Especificidade
9.
Reprod Toxicol ; 111: 34-48, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35525527

RESUMO

The possible neurodevelopmental consequences of SARS-CoV-2 infection are presently unknown. In utero exposure to SARS-CoV-2 has been hypothesized to affect the developing brain, possibly disrupting neurodevelopment of children. Spike protein interactors, such as ACE2, have been found expressed in the fetal brain, and could play a role in potential SARS-CoV-2 fetal brain pathogenesis. Apart from the possible direct involvement of SARS-CoV-2 or its specific viral components in the occurrence of neurological and neurodevelopmental manifestations, we recently reported the presence of toxin-like peptides in plasma, urine and fecal samples specifically from COVID-19 patients. In this study, we investigated the possible neurotoxic effects elicited upon 72-hour exposure to human relevant levels of recombinant spike protein, toxin-like peptides found in COVID-19 patients, as well as a combination of both in 3D human iPSC-derived neural stem cells differentiated for either 2 weeks (short-term) or 8 weeks (long-term, 2 weeks in suspension + 6 weeks on MEA) towards neurons/glia. Whole transcriptome and qPCR analysis revealed that spike protein and toxin-like peptides at non-cytotoxic concentrations differentially perturb the expression of SPHK1, ELN, GASK1B, HEY1, UTS2, ACE2 and some neuronal-, glia- and NSC-related genes critical during brain development. Additionally, exposure to spike protein caused a decrease of spontaneous electrical activity after two days in long-term differentiated cultures. The perturbations of these neurodevelopmental endpoints are discussed in the context of recent knowledge about the key events described in Adverse Outcome Pathways relevant to COVID-19, gathered in the context of the CIAO project (https://www.ciao-covid.net/).


Assuntos
COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Encéfalo/metabolismo , Criança , Humanos , Neuroglia , Neurônios/metabolismo , Peptídeos , Glicoproteína da Espícula de Coronavírus/metabolismo
10.
Medicina (Kaunas) ; 58(5)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35630059

RESUMO

This short communication describes the reinfection after nearly 18 months of the same patient who was previously infected with coronavirus disease 2019 (COVID-19) and who showed multiple negative real-time quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) results by nasal swabs for severe acute respiratory syndrome coronavirus (SARS-CoV-2) but positive results on a fecal sample. We previously noted how, in the presence of symptoms suggestive of pneumonia, visible on a chest computed tomography (CT) scan and confirmed by fecal molecular testing, it was possible to draw the diagnosis of SARS-CoV-2 infection. One year later, the same patient was again affected by SARS-CoV-2. This time, the first antigenic nasal swab showed readily positive results. However, the patient's clinical course appeared to be more attenuated, showing no signs of pulmonary involvement in the radiographic examinations performed. This case shows a novelty in the pulmonary radiological evaluation of new SARS-CoV-2 infection.


Assuntos
COVID-19 , Reinfecção , COVID-19/diagnóstico , Fezes , Humanos , Nasofaringe , SARS-CoV-2
11.
Viruses ; 13(7)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34372565

RESUMO

More than a year after the first identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as the causative agent of the 2019 coronavirus disease (COVID-19) in China, the emergence and spread of genomic variants of this virus through travel raise concerns regarding the introduction of lineages in previously unaffected regions, requiring adequate containment strategies. Concomitantly, such introductions fuel worries about a possible increase in transmissibility and disease severity, as well as a possible decrease in vaccine efficacy. Military personnel are frequently deployed on missions around the world. As part of a COVID-19 risk mitigation strategy, Belgian Armed Forces that engaged in missions and operations abroad were screened (7683 RT-qPCR tests), pre- and post-mission, for the presence of SARS-CoV-2, including the identification of viral lineages. Nine distinct viral genotypes were identified in soldiers returning from operations in Niger, the Democratic Republic of the Congo, Afghanistan, and Mali. The SARS-CoV-2 variants belonged to major clades 19B, 20A, and 20B (Nextstrain nomenclature), and included "variant of interest" B.1.525, "variant under monitoring" A.27, as well as lineages B.1.214, B.1, B.1.1.254, and A (pangolin nomenclature), some of which are internationally monitored due to the specific mutations they harbor. Through contact tracing and phylogenetic analysis, we show that isolation and testing policies implemented by the Belgian military command appear to have been successful in containing the influx and transmission of these distinct SARS-CoV-2 variants into military and civilian populations.


Assuntos
COVID-19/virologia , Militares , SARS-CoV-2/classificação , SARS-CoV-2/genética , Afeganistão/epidemiologia , Bélgica , COVID-19/epidemiologia , China/epidemiologia , República Democrática do Congo/epidemiologia , Genoma Viral , Genômica , Humanos , Mali/epidemiologia , Epidemiologia Molecular , Mutação , Níger/epidemiologia , Filogenia , Viagem , Sequenciamento Completo do Genoma
12.
F1000Res ; 10: 370, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336189

RESUMO

Background Scientific evidence for the involvement of human microbiota in the development of COVID-19 disease has been reported recently. SARS-CoV-2 RNA presence in human faecal samples and SARS-CoV-2 activity in faeces from COVID-19 patients have been observed. Methods Starting from these observations, an experimental design was developed to cultivate in vitro faecal microbiota from infected individuals, to monitor the presence of SARS-CoV-2, and to collect data on the relationship between faecal bacteria and the virus. Results Our results indicate that SARS-CoV-2 replicates in vitro in bacterial growth medium, that the viral replication follows bacterial growth and it is influenced by the administration of specific antibiotics. SARS-CoV-2-related peptides have been detected in 30-day bacterial cultures and characterised. Discussion Our observations are compatible with a 'bacteriophage-like' behaviour of SARS-CoV-2, which, to our knowledge has not been observed or described before. These results are unexpected and hint towards a novel hypothesis on the biology of SARS-CoV-2 and on the COVID-19 epidemiology. The discovery of possible new modes of action of SARS-CoV-2 has far-reaching implications for the prevention and the treatment of the disease.


Assuntos
COVID-19 , SARS-CoV-2 , Biologia , Fezes , Humanos , RNA Viral
13.
Medicina (Kaunas) ; 57(3)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804646

RESUMO

Reverse transcriptase polymerase chain reaction (RT-PCR) negative results in the upper respiratory tract represent a major concern for the clinical management of coronavirus disease 2019 (COVID-19) patients. Herein, we report the case of a 43-years-old man with a strong clinical suspicion of COVID-19, who resulted in being negative to multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RT-PCR tests performed on different oropharyngeal and nasopharyngeal swabs, despite serology having confirmed the presence of SARS-CoV-2 IgM. The patient underwent a chest computed tomography (CT) that showed typical imaging findings of COVID-19 pneumonia. The presence of viral SARS-CoV-2 was confirmed only by performing a SARS-CoV-2 RT-PCR test on stool. Performing of SARS-CoV-2 RT-PCR test on fecal samples can be a rapid and useful approach to confirm COVID-19 diagnosis in cases where there is an apparent discrepancy between COVID-19 clinical symptoms coupled with chest CT and SARS-CoV-2 RT-PCR tests' results on samples from the upper respiratory tract.


Assuntos
COVID-19/diagnóstico , Fezes/química , Pulmão/diagnóstico por imagem , Nasofaringe/química , Orofaringe/química , RNA Viral/isolamento & purificação , Adulto , Anticorpos Antivirais/imunologia , Teste de Ácido Nucleico para COVID-19 , Teste Sorológico para COVID-19 , Reações Falso-Negativas , Fezes/virologia , Humanos , Imunoglobulina M/imunologia , Masculino , Nasofaringe/virologia , Orofaringe/virologia , SARS-CoV-2/genética , Manejo de Espécimes , Tomografia Computadorizada por Raios X
14.
F1000Res ; 10: 550, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35106136

RESUMO

Background: SARS-CoV-2 that causes COVID-19 disease and led to the pandemic currently affecting the world has been broadly investigated. Different studies have been performed to understand the infection mechanism, and the involved human genes, transcripts and proteins. In parallel, numerous clinical extra-pulmonary manifestations co-occurring with COVID-19 disease have been reported and evidence of their severity and persistence is increasing. Whether these manifestations are linked to other disorders co-occurring with SARS-CoV-2 infection, is under discussion. In this work, we report the identification of toxin-like peptides in COVID-19 patients by application of the Liquid Chromatography Surface-Activated Chemical Ionization - Cloud Ion Mobility Mass Spectrometry.   Methods: Plasma, urine and faecal samples from COVID-19 patients and control individuals were analysed to study peptidomic toxins' profiles. Protein precipitation preparation procedure was used for plasma, to remove high molecular weight proteins and efficiently solubilize the peptide fraction; in the case of faeces and urine, direct peptide solubilization was employed.   Results: Toxin-like peptides, almost identical to toxic components of venoms from animals, like conotoxins, phospholipases, phosphodiesterases, zinc metal proteinases, and bradykinins, were identified in samples from COVID-19 patients, but not in control samples.  Conclusions: The presence of toxin-like peptides could potentially be connected to SARS-CoV-2 infection. Their presence suggests a possible association between COVID-19 disease and the release in the body of (oligo-)peptides almost identical to toxic components of venoms from animals. Their involvement in a large set of heterogeneous extra-pulmonary COVID-19 clinical manifestations, like neurological ones, cannot be excluded. Although the presence of each individual symptom is not selective of the disease, their combination might be related to COVID-19 by the coexistence of the panel of the here detected toxin-like peptides. The presence of these peptides opens new scenarios on the aetiology of the COVID-19 clinical symptoms observed up to now, including neurological manifestations.


Assuntos
COVID-19 , Fezes , Humanos , Pandemias , Peptídeos , SARS-CoV-2
15.
F1000Res ; 10: 80, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35847383

RESUMO

Next Generation Sequencing technologies significantly impact the field of Antimicrobial Resistance (AMR) detection and monitoring, with immediate uses in diagnosis and risk assessment. For this application and in general, considerable challenges remain in demonstrating sufficient trust to act upon the meaningful information produced from raw data, partly because of the reliance on bioinformatics pipelines, which can produce different results and therefore lead to different interpretations. With the constant evolution of the field, it is difficult to identify, harmonise and recommend specific methods for large-scale implementations over time. In this article, we propose to address this challenge through establishing a transparent, performance-based, evaluation approach to provide flexibility in the bioinformatics tools of choice, while demonstrating proficiency in meeting common performance standards. The approach is two-fold: first, a community-driven effort to establish and maintain "live" (dynamic) benchmarking platforms to provide relevant performance metrics, based on different use-cases, that would evolve together with the AMR field; second, agreed and defined datasets to allow the pipelines' implementation, validation, and quality-control over time. Following previous discussions on the main challenges linked to this approach, we provide concrete recommendations and future steps, related to different aspects of the design of benchmarks, such as the selection and the characteristics of the datasets (quality, choice of pathogens and resistances, etc.), the evaluation criteria of the pipelines, and the way these resources should be deployed in the community.


Assuntos
Benchmarking , Sequenciamento de Nucleotídeos em Larga Escala , Antibacterianos/farmacologia , Biologia Computacional/métodos , Farmacorresistência Bacteriana/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
16.
Viruses ; 12(9)2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867108

RESUMO

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) compromises the ability of military forces to fulfill missions. At the beginning of May 2020, 22 out of 70 Belgian soldiers deployed to a military education and training center in Maradi, Niger, developed mild COVID-19 compatible symptoms. Immediately upon their return to Belgium, and two weeks later, all seventy soldiers were tested for SARS-CoV-2 RNA (RT-qPCR) and antibodies (two immunoassays). Nine soldiers had at least one positive COVID-19 diagnostic test result. Five of them exhibited COVID-19 symptoms (mainly anosmia, ageusia, and fever), while four were asymptomatic. In four soldiers, SARS-CoV-2 viral load was detected and the genomes were sequenced. Conventional and genomic epidemiological data suggest that these genomes have an African most recent common ancestor and that the Belgian military service men were infected through contact with locals. The medical military command implemented testing of all Belgian soldiers for SARS-CoV-2 viral load and antibodies, two to three days before their departure on a mission abroad or on the high seas, and for specific missions immediately upon their return in Belgium. Some military operational settings (e.g., training camps in austere environments and ships) were also equipped with mobile infectious disease (COVID-19) testing capacity.


Assuntos
Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/epidemiologia , Militares/estatística & dados numéricos , Pneumonia Viral/epidemiologia , Adulto , Bélgica/epidemiologia , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico , Infecções por Coronavirus/diagnóstico , Surtos de Doenças , Humanos , Masculino , Epidemiologia Molecular , Níger/epidemiologia , Pandemias , Pneumonia Viral/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/métodos , SARS-CoV-2 , Testes Sorológicos , Carga Viral , Adulto Jovem
17.
BMC Bioinformatics ; 21(1): 284, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32631215

RESUMO

BACKGROUND: The European Community has adopted very restrictive policies regarding the dissemination and use of genetically modified organisms (GMOs). In fact, a maximum threshold of 0.9% of contaminating GMOs is tolerated for a "GMO-free" label. In recent years, imports of undescribed GMOs have been detected. Their sequences are not described and therefore not detectable by conventional approaches, such as PCR. RESULTS: We developed DUGMO, a bioinformatics pipeline for the detection of genetically modified (GM) bacteria, including unknown GM bacteria, based on Illumina paired-end sequencing data. The method is currently focused on the detection of GM bacteria with - possibly partial - transgenes in pure bacterial samples. In the preliminary steps, coding sequences (CDSs) are aligned through two successive BLASTN against the host pangenome with relevant tuned parameters to discriminate CDSs belonging to the wild type genome (wgCDS) from potential GM coding sequences (pgmCDSs). Then, Bray-Curtis distances are calculated between the wgCDS and each pgmCDS, based on the difference of genomic vocabulary. Finally, two machine learning methods, namely the Random Forest and Generalized Linear Model, are carried out to target true GM CDS(s), based on six variables including Bray-Curtis distances and GC content. Tests carried out on a GM Bacillus subtilis showed 25 positive CDSs corresponding to the chloramphenicol resistance gene and CDSs of the inserted plasmids. On a wild type B. subtilis, no false positive sequences were detected. CONCLUSION: DUGMO detects exogenous CDS, truncated, fused or highly mutated wild CDSs in high-throughput sequencing data, and was shown to be efficient at detecting GM sequences, but it might also be employed for the identification of recent horizontal gene transfers.


Assuntos
Bactérias/química , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Organismos Geneticamente Modificados/genética , Reação em Cadeia da Polimerase/métodos , Humanos
18.
F1000Res ; 9: 1296, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33564397

RESUMO

The JRC COVID-19 In Vitro Diagnostic Devices and Test Methods Database, aimed to collect in a single place all publicly available information on performance of CE-marked in vitro diagnostic medical devices (IVDs) as well as in house laboratory-developed devices and related test methods for COVID-19, is here presented. The database, manually curated and regularly updated, has been developed as a follow-up to the Communication from the European Commission "Guidelines on in vitro diagnostic tests and their performance" of 15 April 2020 and is freely accessible at https://covid-19-diagnostics.jrc.ec.europa.eu/.


Assuntos
COVID-19/diagnóstico , Bases de Dados Factuais , Kit de Reagentes para Diagnóstico , União Europeia , Humanos
19.
Artigo em Inglês | MEDLINE | ID: mdl-30985273

RESUMO

Whereas the dramatic environmental impact of plastic waste rightfully receives considerable attention by scientists, policy makers and public in general, the human health impact of micro- and nanoplastics contamination of our food and beverages remains largely unknown. Indeed, most studies aim at understanding the environmental impact rather than the human health impact of a possible exposure to micro- and nanoplastics. In addition, these papers generally lack a methodological, standardised approach. Furthermore, some studies focus on the damage to and contamination level of animal species collected from the wild environment, and others investigate the rate and biology of microplastic uptake of animals fed with microplastics in laboratory. This review aims at understanding human exposure. Since there is, with few exceptions, no evidence available on the presence of micro- and nanoplastics in a normal diet, this study takes an indirect approach and analyses peer-reviewed publications since 2010 that document the presence of micro- and nanoplastics in those animals (more than 200 species) and food products that are part of the human food chain and that may thus contribute directly or indirectly to the uptake of micro- and nanoplastics via the human diet. It also addresses the question of the definitions, the methodologies and the quality criteria applied to obtain the reported results. This review suggests that, beyond a few estimations and comparisons, precise data to assess the exact exposure of humans to micro- and nanoplastics through their diet cannot be produced until standardised methods and definitions are available.


Assuntos
Contaminação de Alimentos/análise , Abastecimento de Alimentos , Plásticos/análise , Animais , Humanos
20.
Artigo em Inglês | MEDLINE | ID: mdl-30633651

RESUMO

Gadoids are a group of fish with historical importance in the fishing industry. The high demand for cod is one of the reasons why cod products are often mislabelled, and numerous observations have been made on the replacement of Atlantic cod (Gadus morhua) by cheaper species or its illegal capture in contravention of fish quotas. Fish species identification is traditionally based on morphological features, but this may be difficult in case of heat-treated or processed products, or where the species look similar, as in the Gadoid group. DNA-based approaches (using either nuclear or mitochondrial DNA) are most commonly used in this case, due to their high specificity and to the high resilience of the target molecules to food processing techniques. In this article, we identified, using an automated screening approach, novel barcode regions and their associated primers in the nuclear genome, to be used for the efficient identification of Gadoids. The barcode regions were tested on official and commercial samples, raw or mildly treated products, like frozen, or salted, as well as pre-cooked complex mixtures and processed samples, using next-generation sequencing (NGS) technique. The method proposed could complement existing fish identification strategies in establishing an efficient framework to detect and prevent frauds along the food chain.


Assuntos
Núcleo Celular/genética , Código de Barras de DNA Taxonômico , Análise de Alimentos/métodos , Gadus morhua/genética , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...