Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(5): 109663, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38655200

RESUMO

This study investigates the efficacy of proteomic analysis of human remains to identify active infections in the past through the detection of pathogens and the host response to infection. We advance leprosy as a case study due to the sequestering of sufferers in leprosaria and the suggestive skeletal lesions that can result from the disease. Here we present a sequential enzyme extraction protocol, using trypsin followed by ProAlanase, to reduce the abundance of collagen peptides and in so doing increase the detection of non-collagenous proteins. Through our study of five individuals from an 11th to 18th century leprosarium, as well as four from a contemporaneous non-leprosy associated cemetery in Barcelona, we show that samples from 2 out of 5 leprosarium individuals extracted with the sequential digestion methodology contain numerous host immune proteins associated with modern leprosy. In contrast, individuals from the non-leprosy associated cemetery and all samples extracted with a trypsin-only protocol did not. Through this study, we advance a palaeoproteomic methodology to gain insights into the health of archaeological individuals and take a step toward a proteomics-based method to study immune responses in past populations.

2.
Nature ; 607(7918): 313-320, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35768506

RESUMO

The grey wolf (Canis lupus) was the first species to give rise to a domestic population, and they remained widespread throughout the last Ice Age when many other large mammal species went extinct. Little is known, however, about the history and possible extinction of past wolf populations or when and where the wolf progenitors of the present-day dog lineage (Canis familiaris) lived1-8. Here we analysed 72 ancient wolf genomes spanning the last 100,000 years from Europe, Siberia and North America. We found that wolf populations were highly connected throughout the Late Pleistocene, with levels of differentiation an order of magnitude lower than they are today. This population connectivity allowed us to detect natural selection across the time series, including rapid fixation of mutations in the gene IFT88 40,000-30,000 years ago. We show that dogs are overall more closely related to ancient wolves from eastern Eurasia than to those from western Eurasia, suggesting a domestication process in the east. However, we also found that dogs in the Near East and Africa derive up to half of their ancestry from a distinct population related to modern southwest Eurasian wolves, reflecting either an independent domestication process or admixture from local wolves. None of the analysed ancient wolf genomes is a direct match for either of these dog ancestries, meaning that the exact progenitor populations remain to be located.


Assuntos
Cães , Genoma , Genômica , Filogenia , Lobos , África , Animais , DNA Antigo/análise , Cães/genética , Domesticação , Europa (Continente) , Genoma/genética , História Antiga , Oriente Médio , Mutação , América do Norte , Seleção Genética , Sibéria , Proteínas Supressoras de Tumor/genética , Lobos/classificação , Lobos/genética
3.
Front Microbiol ; 12: 762263, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745073

RESUMO

Hansen's disease (leprosy), mainly caused by infection with Mycobacterium leprae, has accompanied humanity for thousands of years. Although currently rare in Europe, there are over 200,000 new infections annually in South East Asia, Africa, and South America. Over the years many disciplines - palaeopathology, ancient DNA and other ancient biomolecules, and history - have contributed to a better understanding of leprosy's past, in particular its history in medieval Europe. We discuss their contributions and potential, especially in relation to the role of inter-species transmission, an unexplored phenomenon in the disease's history. Here, we explore the potential of interdisciplinary approaches that understand disease as a biosocial phenomenon, which is a product of both infection with M. leprae and social behaviours that facilitate transmission and spread. Genetic evidence of M. leprae isolated from archaeological remains combined with systematic zooarchaeological and historical analysis would not only identify when and in what direction transmission occurred, but also key social behaviours and motivations that brought species together. In our opinion, this combination is crucial to understand the disease's zoonotic past and current potential.

4.
BMC Biol ; 19(1): 220, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34610848

RESUMO

BACKGROUND: Hansen's disease (leprosy), widespread in medieval Europe, is today mainly prevalent in tropical and subtropical regions with around 200,000 new cases reported annually. Despite its long history and appearance in historical records, its origins and past dissemination patterns are still widely unknown. Applying ancient DNA approaches to its major causative agent, Mycobacterium leprae, can significantly improve our understanding of the disease's complex history. Previous studies have identified a high genetic continuity of the pathogen over the last 1500 years and the existence of at least four M. leprae lineages in some parts of Europe since the Early Medieval period. RESULTS: Here, we reconstructed 19 ancient M. leprae genomes to further investigate M. leprae's genetic variation in Europe, with a dedicated focus on bacterial genomes from previously unstudied regions (Belarus, Iberia, Russia, Scotland), from multiple sites in a single region (Cambridgeshire, England), and from two Iberian leprosaria. Overall, our data confirm the existence of similar phylogeographic patterns across Europe, including high diversity in leprosaria. Further, we identified a new genotype in Belarus. By doubling the number of complete ancient M. leprae genomes, our results improve our knowledge of the past phylogeography of M. leprae and reveal a particularly high M. leprae diversity in European medieval leprosaria. CONCLUSIONS: Our findings allow us to detect similar patterns of strain diversity across Europe with branch 3 as the most common branch and the leprosaria as centers for high diversity. The higher resolution of our phylogeny tree also refined our understanding of the interspecies transfer between red squirrels and humans pointing to a late antique/early medieval transmission. Furthermore, with our new estimates on the past population diversity of M. leprae, we gained first insights into the disease's global history in relation to major historic events such as the Roman expansion or the beginning of the regular transatlantic long distance trade. In summary, our findings highlight how studying ancient M. leprae genomes worldwide improves our understanding of leprosy's global history and can contribute to current models of M. leprae's worldwide dissemination, including interspecies transmissions.


Assuntos
Mycobacterium leprae , Europa (Continente) , Genoma Bacteriano/genética , Humanos , Hanseníase/genética , Mycobacterium leprae/genética , Dinâmica Populacional
5.
Sci Rep ; 11(1): 5137, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664287

RESUMO

Dogs are known to be the oldest animals domesticated by humans. Although many studies have examined wolf domestication, the geographic and temporal origin of this process is still being debated. To address this issue, our study sheds new light on the early stages of wolf domestication during the Magdalenian period (16-14 ka cal BP) in the Hegau Jura region (Southwestern Germany and Switzerland). By combining morphology, genetics, and isotopes, our multidisciplinary approach helps to evaluate alternate processes driving the early phases of domestication. The isotope analysis uncovered a restricted, low δ15N protein diet for all analyzed Gnirshöhle specimens, while morphological examinations and phylogenetic relationships did not unequivocally assign them to one or the other canid lineage. Intriguingly, the newly generated mitochondrial canid genomes span the entire genetic diversity of modern dogs and wolves. Such high mitochondrial diversity could imply that Magdalenian people tamed and reared animals originating from different wolf lineages. We discuss our results in light of three ecological hypotheses and conclude that both domestication and the existence of a specialized wolf ecomorph are highly probable. However, due to their proximity to humans and a restricted diet, we propose domestication as the most likely scenario explaining the patterns observed herein.


Assuntos
Canidae/genética , DNA Mitocondrial/genética , Filogenia , Lobos/genética , Animais , Cavernas , Cães , Domesticação , Fósseis , Suíça
6.
BMC Biol ; 18(1): 108, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859198

RESUMO

BACKGROUND: Recent advances in sequencing have facilitated large-scale analyses of the metagenomic composition of different samples, including the environmental microbiome of air, water, and soil, as well as the microbiome of living humans and other animals. Analyses of the microbiome of ancient human samples may provide insights into human health and disease, as well as pathogen evolution, but the field is still in its very early stages and considered highly challenging. RESULTS: The metagenomic and pathogen content of Egyptian mummified individuals from different time periods was investigated via genetic analysis of the microbial composition of various tissues. The analysis of the dental calculus' microbiome identified Red Complex bacteria, which are correlated with periodontal diseases. From bone and soft tissue, genomes of two ancient pathogens, a 2200-year-old Mycobacterium leprae strain and a 2000-year-old human hepatitis B virus, were successfully reconstructed. CONCLUSIONS: The results show the reliability of metagenomic studies on Egyptian mummified individuals and the potential to use them as a source for the extraction of ancient pathogen DNA.


Assuntos
Genoma Bacteriano , Genoma Viral , Vírus da Hepatite B/genética , Múmias/microbiologia , Mycobacterium leprae/genética , DNA Antigo/análise , Egito , Humanos , Metagenômica , Microbiota , Múmias/virologia , Análise de Sequência de DNA
7.
Curr Biol ; 30(19): 3788-3803.e10, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32795443

RESUMO

Syphilis is a globally re-emerging disease, which has marked European history with a devastating epidemic at the end of the 15th century. Together with non-venereal treponemal diseases, like bejel and yaws, which are found today in subtropical and tropical regions, it currently poses a substantial health threat worldwide. The origins and spread of treponemal diseases remain unresolved, including syphilis' potential introduction into Europe from the Americas. Here, we present the first genetic data from archaeological human remains reflecting a high diversity of Treponema pallidum in early modern Europe. Our study demonstrates that a variety of strains related to both venereal syphilis and yaws-causing T. pallidum subspecies were already present in Northern Europe in the early modern period. We also discovered a previously unknown T. pallidum lineage recovered as a sister group to yaws- and bejel-causing lineages. These findings imply a more complex pattern of geographical distribution and etiology of early treponemal epidemics than previously understood.


Assuntos
DNA Antigo/análise , Genoma Bacteriano/genética , Treponema pallidum/genética , Arqueologia , Europa (Continente) , Variação Genética/genética , História do Século XV , História Medieval , Humanos , Sífilis/genética , Sífilis/história , Sífilis/microbiologia , Treponema pallidum/metabolismo , Bouba/genética , Bouba/história , Bouba/microbiologia
8.
Sci Rep ; 9(1): 16883, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31729399

RESUMO

Human ancient DNA studies have revealed high mobility in Europe's past, and have helped to decode the human history on the Eurasian continent. Northeastern Europe, especially north of the Baltic Sea, however, remains less well understood largely due to the lack of preserved human remains. Finland, with a divergent population history from most of Europe, offers a unique perspective to hunter-gatherer way of life, but thus far genetic information on prehistoric human groups in Finland is nearly absent. Here we report 103 complete ancient mitochondrial genomes from human remains dated to AD 300-1800, and explore mtDNA diversity associated with hunter-gatherers and Neolithic farmers. The results indicate largely unadmixed mtDNA pools of differing ancestries from Iron-Age on, suggesting a rather late genetic shift from hunter-gatherers towards farmers in North-East Europe. Furthermore, the data suggest eastern introduction of farmer-related haplogroups into Finland, contradicting contemporary genetic patterns in Finns.


Assuntos
Cruzamentos Genéticos , DNA Antigo/análise , DNA Mitocondrial/análise , Migração Humana , Herança Materna/genética , População Branca/genética , Agricultura , DNA Mitocondrial/genética , Europa (Continente) , Fazendeiros/estatística & dados numéricos , Fazendas , Finlândia , Genoma Mitocondrial/genética , História Antiga , Migração Humana/história , Humanos , Ferro , Oceanos e Mares
9.
Science ; 366(6466): 731-734, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31601705

RESUMO

Revealing and understanding the mechanisms behind social inequality in prehistoric societies is a major challenge. By combining genome-wide data, isotopic evidence, and anthropological and archaeological data, we have gone beyond the dominating supraregional approaches in archaeogenetics to shed light on the complexity of social status, inheritance rules, and mobility during the Bronze Age. We applied a deep microregional approach and analyzed genome-wide data of 104 human individuals deriving from farmstead-related cemeteries from the Late Neolithic to the Middle Bronze Age in southern Germany. Our results reveal individual households, lasting several generations, that consisted of a high-status core family and unrelated low-status individuals; a social organization accompanied by patrilocality and female exogamy; and the stability of this system over 700 years.


Assuntos
Características da Família/história , Classe Social/história , Antropologia , DNA Antigo , Feminino , Alemanha , História Antiga , Humanos , Masculino , Linhagem , Polimorfismo de Nucleotídeo Único
10.
Sci Rep ; 9(1): 10700, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31417104

RESUMO

The cave bear (Ursus spelaeus) is one of the Late Pleistocene megafauna species that faced extinction at the end of the last ice age. Although it is represented by one of the largest fossil records in Europe and has been subject to several interdisciplinary studies including palaeogenetic research, its fate remains highly controversial. Here, we used a combination of hybridisation capture and next generation sequencing to reconstruct 59 new complete cave bear mitochondrial genomes (mtDNA) from 14 sites in Western, Central and Eastern Europe. In a Bayesian phylogenetic analysis, we compared them to 64 published cave bear mtDNA sequences to reconstruct the population dynamics and phylogeography during the Late Pleistocene. We found five major mitochondrial DNA lineages resulting in a noticeably more complex biogeography of the European lineages during the last 50,000 years than previously assumed. Furthermore, our calculated effective female population sizes suggest a drastic cave bear population decline starting around 40,000 years ago at the onset of the Aurignacian, coinciding with the spread of anatomically modern humans in Europe. Thus, our study supports a potential significant human role in the general extinction and local extirpation of the European cave bear and illuminates the fate of this megafauna species.


Assuntos
Genoma Mitocondrial , Ursidae/genética , Animais , Teorema de Bayes , DNA Mitocondrial , Europa (Continente) , Extinção Biológica , Feminino , Fósseis , Filogenia , Filogeografia , Densidade Demográfica , Análise de Sequência de DNA
11.
Nat Commun ; 9(1): 1494, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29643405

RESUMO

The original version of this Article omitted references to previous work, which are detailed in the associated Author Correction. These omissions have been corrected in both the PDF and HTML versions of the Article.

12.
Nat Commun ; 9(1): 442, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382937

RESUMO

While the series of events that shaped the transition between foraging societies and food producers are well described for Central and Southern Europe, genetic evidence from Northern Europe surrounding the Baltic Sea is still sparse. Here, we report genome-wide DNA data from 38 ancient North Europeans ranging from ~9500 to 2200 years before present. Our analysis provides genetic evidence that hunter-gatherers settled Scandinavia via two routes. We reveal that the first Scandinavian farmers derive their ancestry from Anatolia 1000 years earlier than previously demonstrated. The range of Mesolithic Western hunter-gatherers extended to the east of the Baltic Sea, where these populations persisted without gene-flow from Central European farmers during the Early and Middle Neolithic. The arrival of steppe pastoralists in the Late Neolithic introduced a major shift in economy and mediated the spread of a new ancestry associated with the Corded Ware Complex in Northern Europe.


Assuntos
Agricultura/história , Genoma Humano , Migrantes/história , População Branca/genética , Países Bálticos , Fósseis , Fluxo Gênico , História Antiga , Humanos , Dinâmica Populacional , Países Escandinavos e Nórdicos
13.
Nature ; 555(7695): 197-203, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29466330

RESUMO

Farming was first introduced to Europe in the mid-seventh millennium bc, and was associated with migrants from Anatolia who settled in the southeast before spreading throughout Europe. Here, to understand the dynamics of this process, we analysed genome-wide ancient DNA data from 225 individuals who lived in southeastern Europe and surrounding regions between 12000 and 500 bc. We document a west-east cline of ancestry in indigenous hunter-gatherers and, in eastern Europe, the early stages in the formation of Bronze Age steppe ancestry. We show that the first farmers of northern and western Europe dispersed through southeastern Europe with limited hunter-gatherer admixture, but that some early groups in the southeast mixed extensively with hunter-gatherers without the sex-biased admixture that prevailed later in the north and west. We also show that southeastern Europe continued to be a nexus between east and west after the arrival of farmers, with intermittent genetic contact with steppe populations occurring up to 2,000 years earlier than the migrations from the steppe that ultimately replaced much of the population of northern Europe.


Assuntos
Fazendeiros/história , Genoma Humano/genética , Genômica , Migração Humana/história , Agricultura/história , Ásia/etnologia , DNA Antigo , Europa (Continente) , Feminino , Genética Populacional , Pradaria , História Antiga , Humanos , Masculino , Distribuição por Sexo
14.
Curr Biol ; 27(23): 3683-3691.e8, 2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29174893

RESUMO

Yersinia pestis, the etiologic agent of plague, is a bacterium associated with wild rodents and their fleas. Historically it was responsible for three pandemics: the Plague of Justinian in the 6th century AD, which persisted until the 8th century [1]; the renowned Black Death of the 14th century [2, 3], with recurrent outbreaks until the 18th century [4]; and the most recent 19th century pandemic, in which Y. pestis spread worldwide [5] and became endemic in several regions [6]. The discovery of molecular signatures of Y. pestis in prehistoric Eurasian individuals and two genomes from Southern Siberia suggest that Y. pestis caused some form of disease in humans prior to the first historically documented pandemic [7]. Here, we present six new European Y. pestis genomes spanning the Late Neolithic to the Bronze Age (LNBA; 4,800 to 3,700 calibrated years before present). This time period is characterized by major transformative cultural and social changes that led to cross-European networks of contact and exchange [8, 9]. We show that all known LNBA strains form a single putatively extinct clade in the Y. pestis phylogeny. Interpreting our data within the context of recent ancient human genomic evidence that suggests an increase in human mobility during the LNBA, we propose a possible scenario for the early spread of Y. pestis: the pathogen may have entered Europe from Central Eurasia following an expansion of people from the steppe, persisted within Europe until the mid-Bronze Age, and moved back toward Central Eurasia in parallel with human populations.


Assuntos
DNA Antigo/análise , Genoma Bacteriano/genética , Yersinia pestis/genética , Arqueologia , Europa (Continente) , Humanos , Filogenia , Peste/microbiologia , Yersinia pestis/classificação
15.
Nature ; 548(7666): 214-218, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28783727

RESUMO

The origins of the Bronze Age Minoan and Mycenaean cultures have puzzled archaeologists for more than a century. We have assembled genome-wide data from 19 ancient individuals, including Minoans from Crete, Mycenaeans from mainland Greece, and their eastern neighbours from southwestern Anatolia. Here we show that Minoans and Mycenaeans were genetically similar, having at least three-quarters of their ancestry from the first Neolithic farmers of western Anatolia and the Aegean, and most of the remainder from ancient populations related to those of the Caucasus and Iran. However, the Mycenaeans differed from Minoans in deriving additional ancestry from an ultimate source related to the hunter-gatherers of eastern Europe and Siberia, introduced via a proximal source related to the inhabitants of either the Eurasian steppe or Armenia. Modern Greeks resemble the Mycenaeans, but with some additional dilution of the Early Neolithic ancestry. Our results support the idea of continuity but not isolation in the history of populations of the Aegean, before and after the time of its earliest civilizations.


Assuntos
Etnicidade/genética , Filogenia , Cromossomos Humanos X/genética , Etnicidade/história , Feminino , Grécia , História Antiga , Migração Humana/história , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...