Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cells ; 12(23)2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-38067102

RESUMO

Satellite cells (SCs) are adult muscle stem cells that are mobilized when muscle homeostasis is perturbed. Here we show that RhoA in SCs is indispensable to have correct muscle regeneration and hypertrophy. In particular, the absence of RhoA in SCs prevents a correct SC fusion both to other RhoA-deleted SCs (regeneration context) and to growing control myofibers (hypertrophy context). We demonstrated that RhoA is dispensable for SCs proliferation and differentiation; however, RhoA-deleted SCs have an inefficient movement even if their cytoskeleton assembly is not altered. Proliferative myoblast and differentiated myotubes without RhoA display a decreased expression of Chordin, suggesting a crosstalk between these genes for myoblast fusion regulation. These findings demonstrate the importance of RhoA in SC fusion regulation and its requirement to achieve an efficient skeletal muscle homeostasis restoration.


Assuntos
Fusão Celular , Fibras Musculares Esqueléticas , Células Satélites de Músculo Esquelético , Proteína rhoA de Ligação ao GTP , Humanos , Comunicação Celular , Hipertrofia/metabolismo , Células Satélites de Músculo Esquelético/fisiologia , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/fisiologia
2.
Med Sci (Paris) ; 39 Hors série n° 1: 47-53, 2023 Nov.
Artigo em Francês | MEDLINE | ID: mdl-37975770

RESUMO

Sarcopenia is a complex age-related muscular disease affecting 10 to 16 % of people over 65 years old. It is characterized by excessive loss of muscle mass and strength. Despite a plethora of studies aimed at understanding the physiological mechanisms underlying this pathology, the pathophysiology of sarcopenia remains poorly understood. To date, there is no pharmacological treatment for this disease. In this context, our team develop therapeutic approaches based on the GDF5 protein to counteract the loss of muscle mass and function in various pathological conditions, including sarcopenia. After deciphering one of the molecular mechanisms governing GDF5 expression, we have demonstrated the therapeutic potential of this protein in the preservation of muscle mass and strength in aged mice.


Title: GDF5 - Un candidat thérapeutique dans la lutte contre la sarcopénie. Abstract: La sarcopénie est une maladie musculaire complexe liée à l'âge qui affecte entre 10 à 16 % des personnes âgées de plus 65 ans. Elle se caractérise par une perte excessive de la masse musculaire et de la force. Malgré la multitude d'études visant à comprendre les mécanismes physiologiques qui sous-tendent cette pathologie, la physiopathologie de la sarcopénie reste encore mal comprise. A ce jour, il n'existe pas de traitement pharmacologique pour lutter contre cette pathologie. Dans ce contexte, notre équipe développe des approches thérapeutiques basées sur l'utilisation de la protéine GDF5 pour contrecarrer la perte de la masse et de la fonction musculaire dans diverses conditions pathologiques dont la sarcopénie. Après avoir décrypté un des mécanismes moléculaires régulant l'expression du GDF5, nous avons démontré le potentiel thérapeutique de cette protéine dans la préservation de la masse et la force musculaire chez les souris âgées.


Assuntos
Sarcopenia , Idoso , Animais , Humanos , Camundongos , Fator 5 de Diferenciação de Crescimento/metabolismo , Músculo Esquelético/patologia , Sarcopenia/tratamento farmacológico , Sarcopenia/genética
3.
Sci Transl Med ; 15(685): eadd5275, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36857434

RESUMO

Duchenne muscular dystrophy (DMD) is a severe and progressive myopathy leading to motor and cardiorespiratory impairment. We analyzed samples from patients with DMD and a preclinical rat model of severe DMD and determined that compromised repair capacity of muscle stem cells in DMD is associated with early and progressive muscle stem cell senescence. We also found that extraocular muscles (EOMs), which are spared by the disease in patients, contain muscle stem cells with long-lasting regenerative potential. Using single-cell transcriptomics analysis of muscles from a rat model of DMD, we identified the gene encoding thyroid-stimulating hormone receptor (Tshr) as highly expressed in EOM stem cells. Further, TSHR activity was involved in preventing senescence. Forskolin, which activates signaling downstream of TSHR, was found to reduce senescence of skeletal muscle stem cells, increase stem cell regenerative potential, and promote myogenesis, thereby improving muscle function in DMD rats. These findings indicate that stimulation of adenylyl cyclase leads to muscle repair in DMD, potentially providing a therapeutic approach for patients with the disease.


Assuntos
Distrofia Muscular de Duchenne , Receptores da Tireotropina , Animais , Ratos , Receptores Acoplados a Proteínas G , Fibras Musculares Esqueléticas , Células-Tronco , Regeneração , Tireotropina
4.
JCI Insight ; 7(17)2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35917173

RESUMO

The sarcoplasmic reticulum (SR) plays an important role in calcium homeostasis. SR calcium mishandling is described in pathological conditions, such as myopathies. Here, we investigated whether the nuclear receptor subfamily 1 group D member (NR1D1, also called REV-ERBα) regulates skeletal muscle SR calcium homeostasis. Our data demonstrate that NR1D1 deficiency in mice impaired sarco/endoplasmic reticulum calcium ATPase-dependent (SERCA-dependent) SR calcium uptake. NR1D1 acts on calcium homeostasis by repressing the SERCA inhibitor myoregulin through direct binding to its promoter. Restoration of myoregulin counteracted the effects of NR1D1 overexpression on SR calcium content. Interestingly, myoblasts from patients with Duchenne muscular dystrophy displayed lower NR1D1 expression, whereas pharmacological NR1D1 activation ameliorated SR calcium homeostasis and improved muscle structure and function in dystrophic mdx/Utr+/- mice. Our findings demonstrate that NR1D1 regulates muscle SR calcium homeostasis, pointing to its therapeutic potential for mitigating myopathy.


Assuntos
Cálcio , Músculo Esquelético , Animais , Cálcio/metabolismo , Homeostase , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Retículo Sarcoplasmático/metabolismo
5.
Sci Rep ; 12(1): 9674, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690627

RESUMO

Duchenne muscular dystrophy is a severe neuromuscular disease causing a progressive muscle wasting due to mutations in the DMD gene that lead to the absence of dystrophin protein. Adeno-associated virus (AAV)-based therapies aiming to restore dystrophin in muscles, by either exon skipping or microdystrophin expression, are very promising. However, the absence of dystrophin induces cellular perturbations that hinder AAV therapy efficiency. We focused here on the impact of the necrosis-regeneration process leading to nuclear centralization in myofiber, a common feature of human myopathies, on AAV transduction efficiency. We generated centronucleated myofibers by cardiotoxin injection in wild-type muscles prior to AAV injection. Intramuscular injections of AAV1 vectors show that transgene expression was drastically reduced in regenerated muscles, even when the AAV injection occurred 10 months post-regeneration. We show also that AAV genomes were not lost from cardiotoxin regenerated muscle and were properly localised in the myofiber nuclei but were less transcribed leading to muscle transduction defect. A similar defect was observed in muscles of the DMD mouse model mdx. Therefore, the regeneration process per se could participate to the AAV-mediated transduction defect observed in dystrophic muscles which may limit AAV-based therapies.


Assuntos
Distrofia Muscular Animal , Distrofia Muscular de Duchenne , Animais , Cardiotoxinas/farmacologia , Dependovirus/genética , Dependovirus/metabolismo , Distrofina/genética , Distrofina/metabolismo , Terapia Genética , Vetores Genéticos/genética , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/terapia , Regeneração/genética , Transgenes
6.
Front Cell Dev Biol ; 10: 880441, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35465309

RESUMO

The voltage-gated calcium channels (CaVs or VGCCs) are fundamental regulators of intracellular calcium homeostasis. When electrical activity induces their activation, the influx of calcium that they mediate or their interaction with intracellular players leads to changes in intracellular Ca2+ levels which regulate many processes such as contraction, secretion and gene expression, depending on the cell type. The essential component of the pore channel is the CaVα1 subunit. However, the fine-tuning of Ca2+-dependent signals is guaranteed by the modulatory role of the auxiliary subunits ß, α2δ, and γ of the CaVs. In particular, four different CaVß proteins (CaVß1, CaVß2, CaVß3, and CaVß4) are encoded by four different genes in mammalians, each of them displaying several splice variants. Some of these isoforms have been described in regulating CaVα1 docking and stability at the membrane and controlling the channel complex's conformational changes. In addition, emerging evidences have highlighted other properties of the CaVß subunits, independently of α1 and non-correlated to its channel or voltage sensing functions. This review summarizes the recent findings reporting novel roles of the auxiliary CaVß subunits and in particular their direct or indirect implication in regulating gene expression in different cellular contexts.

7.
Acta Neuropathol Commun ; 10(1): 60, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468843

RESUMO

Duchenne muscular dystrophy (DMD) is a fatal muscle-wasting disorder caused by mutations in the Dystrophin gene and for which there is currently no cure. To bridge the gap between preclinical and therapeutic evaluation studies, we have generated a rat model for DMD that carries an exon 52 deletion (R-DMDdel52) causing a complete lack of dystrophin protein. Here we show that R-DMDdel52 animals recapitulated human DMD pathophysiological trajectory more faithfully than the mdx mouse model. We report that R-DMDdel52 rats displayed progressive and severe skeletal muscle loss associated with fibrotic deposition, fat infiltration and fibre type switch. Early fibrosis was also apparent in the cardiac muscle. These histological modifications led to severe muscle, respiratory and cardiac functional impairments leading to premature death around 1 year. Moreover, DMD muscle exhibited systemic inflammation with a mixed M1/M2 phenotype. A comparative single cell RNAseq analysis of the diaphragm muscle was performed, revealing cellular populations alteration and molecular modifications in all muscle cell types. We show that DMD fibroadipogenic progenitors produced elevated levels of cartilage oligomeric matrix protein, a glycoprotein responsible for modulating homeostasis of extracellular matrix, and whose increased concentration correlated with muscle fibrosis both in R-DMDdel52 rats and human patients. Fibrosis is a component of tissue remodelling impacting the whole musculature of DMD patients, at the tissue level but most importantly at the functional level. We therefore propose that this specific biomarker can optimize the prognostic monitoring of functional improvement of patients included in clinical trials.


Assuntos
Distrofia Muscular de Duchenne , Animais , Biomarcadores , Proteína de Matriz Oligomérica de Cartilagem/uso terapêutico , Distrofina/metabolismo , Fibrose , Humanos , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/terapia , Ratos
8.
EMBO Mol Med ; 14(5): e12860, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35298089

RESUMO

Duchenne muscular dystrophy (DMD) is characterized by progressive muscle degeneration. Two important deleterious features are a Ca2+ dysregulation linked to Ca2+ influxes associated with ryanodine receptor hyperactivation, and a muscular nicotinamide adenine dinucleotide (NAD+ ) deficit. Here, we identified that deletion in mdx mice of CD38, a NAD+ glycohydrolase-producing modulators of Ca2+ signaling, led to a fully restored heart function and structure, with skeletal muscle performance improvements, associated with a reduction in inflammation and senescence markers. Muscle NAD+ levels were also fully restored, while the levels of the two main products of CD38, nicotinamide and ADP-ribose, were reduced, in heart, diaphragm, and limb. In cardiomyocytes from mdx/CD38-/- mice, the pathological spontaneous Ca2+ activity was reduced, as well as in myotubes from DMD patients treated with isatuximab (SARCLISA® ) a monoclonal anti-CD38 antibody. Finally, treatment of mdx and utrophin-dystrophin-deficient (mdx/utr-/- ) mice with CD38 inhibitors resulted in improved skeletal muscle performances. Thus, we demonstrate that CD38 actively contributes to DMD physiopathology. We propose that a selective anti-CD38 therapeutic intervention could be highly relevant to develop for DMD patients.


Assuntos
Distrofia Muscular de Duchenne , ADP-Ribosil Ciclase 1 , Animais , Humanos , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético , Distrofia Muscular de Duchenne/genética , Miócitos Cardíacos/patologia , NAD/genética , NAD/uso terapêutico , NAD+ Nucleosidase/genética , Fenótipo
9.
J Gen Physiol ; 153(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34636893

RESUMO

One of the most important functions of skeletal muscle is to respond to nerve stimuli by contracting. This function ensures body movement but also participates in other important physiological roles, like regulation of glucose homeostasis. Muscle activity is closely regulated to adapt to different demands and shows a plasticity that relies on both transcriptional activity and nerve stimuli. These two processes, both dependent on depolarization of the plasma membrane, have so far been regarded as separated and independent processes due to a lack of evidence of common protein partners or molecular mechanisms. In this study, we reveal intimate functional interactions between the process of excitation-induced contraction and the process of excitation-induced transcriptional activity in skeletal muscle. We show that the plasma membrane voltage-sensing protein CaV1.1 and the ATP-releasing channel Pannexin-1 (Panx1) regulate each other in a reciprocal manner, playing roles in both processes. Specifically, knockdown of CaV1.1 produces chronically elevated extracellular ATP concentrations at rest, consistent with disruption of the normal control of Panx1 activity. Conversely, knockdown of Panx1 affects not only activation of transcription but also CaV1.1 function on the control of muscle fiber contraction. Altogether, our results establish the presence of bidirectional functional regulations between the molecular machineries involved in the control of contraction and transcription induced by membrane depolarization of adult muscle fibers. Our results are important for an integrative understanding of skeletal muscle function and may impact our understanding of several neuromuscular diseases.


Assuntos
Canais de Cálcio Tipo L , Acoplamento Excitação-Contração , Canais de Cálcio Tipo L/metabolismo , Contração Muscular , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo
10.
Biomedicines ; 9(2)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672764

RESUMO

In skeletal muscle, long noncoding RNAs (lncRNAs) are involved in dystrophin protein stabilization but also in the regulation of myocytes proliferation and differentiation. Hence, they could represent promising therapeutic targets and/or biomarkers for Duchenne and Becker muscular dystrophy (DMD/BMD). DMD and BMD are X-linked myopathies characterized by a progressive muscular dystrophy with or without dilatative cardiomyopathy. Two-thirds of DMD gene mutations are represented by deletions, and 63% of patients carrying DMD deletions are eligible for 45 to 55 multi-exons skipping (MES), becoming BMD patients (BMDΔ45-55). We analyzed the genomic lncRNA presence in 38 BMDΔ45-55 patients and characterized the lncRNA localized in introns 44 and 55 of the DMD gene. We highlighted that all four lncRNA are differentially expressed during myogenesis in immortalized and primary human myoblasts. In addition, the lncRNA44s2 was pointed out as a possible accelerator of differentiation. Interestingly, lncRNA44s expression was associated with a favorable clinical phenotype. These findings suggest that lncRNA44s2 could be involved in muscle differentiation process and become a potential disease progression biomarker. Based on these results, we support MES45-55 therapy and propose that the design of the CRISPR/Cas9 MES45-55 assay consider the lncRNA sequences bordering the exonic 45 to 55 deletion.

11.
Mol Ther Methods Clin Dev ; 17: 695-708, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32346547

RESUMO

Duchenne muscular dystrophy (DMD) is a devastating neuromuscular disease caused by an absence of the dystrophin protein, which is essential for muscle fiber integrity. Among the developed therapeutic strategies for DMD, the exon-skipping approach corrects the frameshift and partially restores dystrophin expression. It could be achieved through the use of antisense sequences, such as peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO) or the small nuclear RNA-U7 carried by an adeno-associated virus (AAV) vector. AAV-based gene therapy approaches have potential for use in DMD treatment but are subject to a major limitation: loss of the AAV genome, necessitating readministration of the vector, which is not currently possible, due to the immunogenicity of the capsid. The PPMO approach requires repeated administrations and results in only weak cardiac dystrophin expression. Here, we evaluated a combination of PPMO- and AAV-based therapy in a mouse model of severe DMD. Striking benefits of this combined therapy were observed in striated muscles, with marked improvements in heart and diaphragm structure and function, with unrivalled extent of survival, opening novel therapeutic perspectives for patients.

12.
Sci Transl Med ; 11(517)2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31694926

RESUMO

Deciphering the mechanisms that govern skeletal muscle plasticity is essential to understand its pathophysiological processes, including age-related sarcopenia. The voltage-gated calcium channel CaV1.1 has a central role in excitation-contraction coupling (ECC), raising the possibility that it may also initiate the adaptive response to changes during muscle activity. Here, we revealed the existence of a gene transcription switch of the CaV1.1 ß subunit (CaVß1) that is dependent on the innervation state of the muscle in mice. In a mouse model of sciatic denervation, we showed increased expression of an embryonic isoform of the subunit that we called CaVß1E. CaVß1E boosts downstream growth differentiation factor 5 (GDF5) signaling to counteract muscle loss after denervation in mice. We further reported that aged mouse muscle expressed lower quantity of CaVß1E compared with young muscle, displaying an altered GDF5-dependent response to denervation. Conversely, CaVß1E overexpression improved mass wasting in aging muscle in mice by increasing GDF5 expression. We also identified the human CaVß1E analogous and show a correlation between CaVß1E expression in human muscles and age-related muscle mass decline. These results suggest that strategies targeting CaVß1E or GDF5 might be effective in reducing muscle mass loss in aging.


Assuntos
Envelhecimento/metabolismo , Canais de Cálcio Tipo L/metabolismo , Embrião de Mamíferos/metabolismo , Fator 5 de Diferenciação de Crescimento/metabolismo , Músculos/anatomia & histologia , Transdução de Sinais , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Atrofia , Canais de Cálcio Tipo L/genética , Denervação , Éxons/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Camundongos , Músculos/inervação , Junção Neuromuscular/metabolismo , Tamanho do Órgão , Condicionamento Físico Animal , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Splicing de RNA/genética , Adulto Jovem
13.
Skelet Muscle ; 8(1): 15, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29703249

RESUMO

BACKGROUND: Duchenne (DMD) and Becker (BMD) muscular dystrophies are caused by mutations in the DMD gene coding for dystrophin, a protein being part of a large sarcolemmal protein scaffold that includes the neuronal nitric oxide synthase (nNOS). The nNOS was shown to play critical roles in a variety of muscle functions and alterations of its expression and location in dystrophic muscle fiber leads to an increase of the muscle fatigability. We previously revealed a decrease of nNOS expression in BMD patients all presenting a deletion of exons 45 to 55 in the DMD gene (BMDd45-55), impacting the nNOS binding site of dystrophin. Since several studies showed deregulation of microRNAs (miRNAs) in dystrophinopathies, we focused on miRNAs that could target nNOS in dystrophic context. METHODS: By a screening of 617 miRNAs in BMDd45-55 muscular biopsies using TLDA and an in silico study to determine which one could target nNOS, we selected four miRNAs. In order to select those that targeted a sequence of 3'UTR of NOS1, we performed luciferase gene reporter assay in HEK393T cells. Finally, expression of candidate miRNAs was modulated in control and DMD human myoblasts (DMDd45-52) to study their ability to target nNOS. RESULTS: TLDA assay and the in silico study allowed us to select four miRNAs overexpressed in muscle biopsies of BMDd45-55 compared to controls. Among them, only the overexpression of miR-31, miR-708, and miR-34c led to a decrease of luciferase activity in an NOS1-3'UTR-luciferase assay, confirming their interaction with the NOS1-3'UTR. The effect of these three miRNAs was investigated on control and DMDd45-52 myoblasts. First, we showed a decrease of nNOS expression when miR-708 or miR-34c were overexpressed in control myoblasts. We then confirmed that DMDd45-52 cells displayed an endogenous increased of miR-31, miR-708, and miR-34c and a decreased of nNOS expression, the same characteristics observed in BMDd45-55 biopsies. In DMDd45-52 cells, we demonstrated that the inhibition of miR-708 and miR-34c increased nNOS expression, confirming that both miRNAs can modulate nNOS expression in human myoblasts. CONCLUSION: These results strongly suggest that miR-708 and miR-34c, overexpressed in dystrophic context, are new actors involved in the regulation of nNOS expression in dystrophic muscle.


Assuntos
MicroRNAs/genética , Distrofia Muscular de Duchenne/genética , Óxido Nítrico Sintase Tipo I/genética , Adolescente , Adulto , Idoso , Biópsia , Criança , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Regulação Enzimológica da Expressão Gênica , Humanos , Masculino , MicroRNAs/fisiologia , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Mioblastos/enzimologia , Óxido Nítrico Sintase Tipo I/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/métodos
14.
J Biol Chem ; 293(18): 6637-6646, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29535188

RESUMO

Dystrophin, encoded by the DMD gene, is critical for maintaining plasma membrane integrity during muscle contraction events. Mutations in the DMD gene disrupting the reading frame prevent dystrophin production and result in severe Duchenne muscular dystrophy (DMD); in-frame internal deletions allow production of partly functional internally deleted dystrophin and result in less severe Becker muscular dystrophy (BMD). Many known BMD deletions occur in dystrophin's central domain, generally considered to be a monotonous rod-shaped domain based on the knowledge of spectrin family proteins. However, the effects caused by these deletions, ranging from asymptomatic to severe BMD, argue against the central domain serving only as a featureless scaffold. We undertook structural studies combining small-angle X-ray scattering and molecular modeling in an effort to uncover the structure of the central domain, as dystrophin has been refractory to characterization. We show that this domain appears to be a tortuous and complex filament that is profoundly disorganized by the most severe BMD deletion (loss of exons 45-47). Despite the preservation of large parts of the binding site for neuronal nitric oxide synthase (nNOS) in this deletion, computational approaches failed to recreate the association of dystrophin with nNOS. This observation is in agreement with a strong decrease of nNOS immunolocalization in muscle biopsies, a parameter related to the severity of BMD phenotypes. The structural description of the whole dystrophin central domain we present here is a first necessary step to improve the design of microdystrophin constructs toward the goal of a successful gene therapy for DMD.


Assuntos
Distrofina/química , Distrofina/genética , Deleção de Genes , Distrofia Muscular de Duchenne/genética , Sítios de Ligação , Éxons , Humanos , Simulação de Acoplamento Molecular , Distrofia Muscular de Duchenne/enzimologia , Óxido Nítrico Sintase Tipo I/metabolismo , Domínios Proteicos , Fases de Leitura , Espalhamento a Baixo Ângulo , Soluções , Difração de Raios X
15.
Sci Rep ; 8(1): 210, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29317724

RESUMO

Adeno-associated virus (AAV) transduction efficiency depends on the way in which cellular proteins process viral genomes in the nucleus. In this study, we have investigated the binding of nuclear proteins to the double stranded D (dsD) sequence of the AAV inverted terminal repeat (ITRs) by electromobility shift assay. We present here several lines of evidence that transcription factors belonging to the RFX protein family bind specifically and selectively to AAV2 and AAV1 dsD sequences. Using supershift experiments, we characterize complexes containing RFX1 homodimers and RFX1/RFX3 heterodimers. Following transduction of HEK-293 cells, the AAV genome can be pulled-down by RFX1 and RFX3 antibodies. Moreover, our data suggest that RFX proteins which interact with transcriptional enhancers of several mammalian DNA viruses, can act as regulators of AAV mediated transgene expression.


Assuntos
Dependovirus/genética , Fatores de Transcrição de Fator Regulador X/metabolismo , Fator Regulador X1/metabolismo , Transdução Genética , Dependovirus/metabolismo , Células HEK293 , Humanos , Ligação Proteica , Fatores de Transcrição de Fator Regulador X/genética , Fator Regulador X1/genética , Sequências Repetidas Terminais
16.
EMBO Mol Med ; 9(5): 545-557, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28289078

RESUMO

The use of splice-switching antisense therapy is highly promising, with a wealth of pre-clinical data and numerous clinical trials ongoing. Nevertheless, its potential to treat a variety of disorders has yet to be realized. The main obstacle impeding the clinical translation of this approach is the relatively poor delivery of antisense oligonucleotides to target tissues after systemic delivery. We are a group of researchers closely involved in the development of these therapies and would like to communicate our discussions concerning the validity of standard methodologies currently used in their pre-clinical development, the gaps in current knowledge and the pertinent challenges facing the field. We therefore make recommendations in order to focus future research efforts and facilitate a wider application of therapeutic antisense oligonucleotides.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Terapia Genética/métodos , Oligonucleotídeos Antissenso/administração & dosagem , Splicing de RNA , Animais , Vias de Administração de Medicamentos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Oligonucleotídeos Antissenso/farmacocinética , Oligonucleotídeos Antissenso/uso terapêutico , Oligonucleotídeos Antissenso/toxicidade , Splicing de RNA/efeitos dos fármacos
17.
Hum Mutat ; 38(2): 152-159, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27790796

RESUMO

Dent-2 disease and Lowe syndrome are two pathologies caused by mutations in inositol polyphosphate 5-phosphatase OCRL gene. Both conditions share proximal tubulopathy evolving to chronic kidney failure. Lowe syndrome is in addition defined by a bilateral congenital cataract, intellectual disability, and hypotonia. The pathology evolves in two decades to a severe condition with renal complications and a fatal issue. We describe here a proof of principle for a targeted gene therapy on a mutation of the OCRL gene that is associated with Lowe syndrome. The affected patient bears a deep intronic mutation inducing a pseudo-exon inclusion in the mRNA, leading to a OCRL-1 protein loss. An exon-skipping strategy was designed to correct the effect of the mutation in cultured cells. We show that a recombinant U7-modified small RNA efficiently triggered the restoration of normal OCRL expression at mRNA and protein levels in patient's fibroblasts. Moreover, the PI(4,5)P2 accumulation and cellular alterations that are hallmark of OCRL-1 dysfunction were also rescued. Altogether, we provide evidence that the restoration of OCRL-1 protein, even at a reduced level, through RNA-based therapy represents a potential therapeutic approach for patients with OCRL splice mutations.


Assuntos
Íntrons , Mutação , Síndrome Oculocerebrorrenal/genética , Síndrome Oculocerebrorrenal/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Alelos , Processamento Alternativo , Substituição de Aminoácidos , Pré-Escolar , Ativação Enzimática , Éxons , Fibroblastos , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Imagem Molecular , Síndrome Oculocerebrorrenal/diagnóstico , Fenótipo
18.
Hum Mol Genet ; 25(16): 3555-3563, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27378686

RESUMO

In preclinical models for Duchenne muscular dystrophy, dystrophin restoration during adeno-associated virus (AAV)-U7-mediated exon-skipping therapy was shown to decrease drastically after six months in treated muscles. This decline in efficacy is strongly correlated with the loss of the therapeutic AAV genomes, probably due to alterations of the dystrophic myofiber membranes. To improve the membrane integrity of the dystrophic myofibers at the time of AAV-U7 injection, mdx muscles were pre-treated with a single dose of the peptide-phosphorodiamidate morpholino (PPMO) antisense oligonucleotides that induced temporary dystrophin expression at the sarcolemma. The PPMO pre-treatment allowed efficient maintenance of AAV genomes in mdx muscles and enhanced the AAV-U7 therapy effect with a ten-fold increase of the protein level after 6 months. PPMO pre-treatment was also beneficial to AAV-mediated gene therapy with transfer of micro-dystrophin cDNA into muscles. Therefore, avoiding vector genome loss after AAV injection by PPMO pre-treatment would allow efficient long-term restoration of dystrophin and the use of lower and thus safer vector doses for Duchenne patients.


Assuntos
Distrofina/genética , Terapia Genética , Morfolinos/administração & dosagem , Distrofia Muscular Animal/terapia , Distrofia Muscular de Duchenne/terapia , Oligonucleotídeos Antissenso/administração & dosagem , Animais , Dependovirus/genética , Éxons/genética , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Humanos , Camundongos Endogâmicos mdx , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Distrofia Muscular Animal/genética , Distrofia Muscular de Duchenne/genética , Sarcolema/efeitos dos fármacos , Sarcolema/patologia
19.
Hum Gene Ther ; 27(9): 712-26, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27279388

RESUMO

At present, the clinically most advanced strategy to treat Duchenne muscular dystrophy (DMD) is the exon-skipping strategy. Whereas antisense oligonucleotide-based clinical trials are underway for DMD, it is essential to determine the dystrophin restoration threshold needed to ensure improvement of muscle physiology at the molecular level. A preclinical trial has been conducted in golden retriever muscular dystrophy (GRMD) dogs treated in a forelimb by locoregional delivery of rAAV8-U7snRNA to promote exon skipping on the canine dystrophin messenger. Here, we exploited rAAV8-U7snRNA-transduced GRMD muscle samples, well characterized for their percentage of dystrophin-positive fibers, with the aim of defining the threshold of dystrophin rescue necessary for normalization of the status of neuronal nitric oxide synthase mu (nNOSµ), inducible nitric oxide synthase (iNOS), and ryanodine receptor-calcium release channel type 1 (RyR1), crucial actors for efficient contractile function. Results showed that restoration of dystrophin in 40% of muscle fibers is needed to decrease abnormal cytosolic nNOSµ expression and to reduce overexpression of iNOS, these two parameters leading to a reduction in the NO level in the muscle fibers. Furthermore, the same percentage of dystrophin-positive fibers of 40% was associated with the normalization of RyR1 nitrosylation status and with stabilization of the RyR1-calstabin1 complex that is required to facilitate coupled gating. We concluded that a minimal threshold of 40% of dystrophin-positive fibers is necessary for the reinstatement of central proteins needed for proper muscle contractile function, and thus identified a rate of dystrophin expression significantly improving, at the molecular level, the dystrophic muscle physiology.


Assuntos
Distrofina/metabolismo , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Cães , Músculo Esquelético/citologia , Nitrosação
20.
J Cell Biol ; 205(3): 377-93, 2014 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-24798732

RESUMO

The ubiquitous clathrin heavy chain (CHC), the main component of clathrin-coated vesicles, is well characterized for its role in intracellular membrane traffic and endocytosis from the plasma membrane (PM). Here, we demonstrate that in skeletal muscle CHC regulates the formation and maintenance of PM-sarcomere attachment sites also known as costameres. We show that clathrin forms large coated lattices associated with actin filaments and the muscle-specific isoform of α-actinin at the PM of differentiated myotubes. Depletion of CHC in myotubes induced a loss of actin and α-actinin sarcomeric organization, whereas CHC depletion in vivo induced a loss of contractile force due to the detachment of sarcomeres from the PM. Our results suggest that CHC contributes to the formation and maintenance of the contractile apparatus through interactions with costameric proteins and highlight an unconventional role for CHC in skeletal muscle that may be relevant to pathophysiology of neuromuscular disorders.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Cadeias Pesadas de Clatrina/metabolismo , Costâmeros/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Sarcômeros/metabolismo , Células 3T3 , Actinina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Cadeias Pesadas de Clatrina/genética , Costâmeros/patologia , Proteínas de Ligação a DNA/metabolismo , Dependovirus/genética , Dinamina II/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos , Contração Muscular , Fibras Musculares Esqueléticas/patologia , Força Muscular , Distrofias Musculares/metabolismo , Distrofias Musculares/patologia , Distrofias Musculares/fisiopatologia , Miopatias Congênitas Estruturais/metabolismo , Miopatias Congênitas Estruturais/patologia , Miopatias Congênitas Estruturais/fisiopatologia , Sarcômeros/patologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...