Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Front Immunol ; 14: 1172681, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251405

RESUMO

Adoptive cell therapy based on chimeric antigen receptor (CAR)-engineered T-cells has proven to be lifesaving for many cancer patients. However, its therapeutic efficacy has so far been restricted to only a few malignancies, with solid tumors proving to be especially recalcitrant to efficient therapy. Poor intra-tumor infiltration by T cells and T cell dysfunction due to a desmoplastic, immunosuppressive microenvironment are key barriers for CAR T-cell success against solid tumors. Cancer-associated fibroblasts (CAFs) are critical components of the tumor stroma, evolving specifically within the tumor microenvironment (TME) in response to tumor cell cues. The CAF secretome is a significant contributor to the extracellular matrix and a plethora of cytokines and growth factors that induce immune suppression. Together they form a physical and chemical barrier which induces a T cell-excluding 'cold' TME. CAF depletion in stroma rich solid tumors can thus provide an opportunity to convert immune evasive tumors susceptible to tumor-antigen CAR T-cell cytotoxicity. Using our TALEN-based gene editing platform we engineered non-alloreactive, immune evasive CAR T-cells (termed UCAR T-cells) targeting the unique CAF marker Fibroblast Activation Protein, alpha (FAP). In an orthotopic mouse model of triple-negative breast cancer (TNBC) composed of patient derived-CAFs and tumor cells, we demonstrate the efficacy of our engineered FAP UCAR T-cells in CAF depletion, reduction of desmoplasia and successful tumor infiltration. Furthermore, while previously resistant, pre-treatment with FAP UCAR T-cells now sensitized these tumors to Mesothelin (Meso) UCAR T-cell infiltration and anti-tumor cytotoxicity. Combination therapy of FAP UCAR, Meso UCAR T cells and the checkpoint inhibitor anti-PD-1 significantly reduced tumor burden and prolonged mice survival. Our study thus proposes a novel treatment paradigm for successful CAR T-cell immunotherapy against stroma-rich solid tumors.


Assuntos
Receptores de Antígenos Quiméricos , Animais , Camundongos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Imunoterapia , Linfócitos T , Antígenos de Neoplasias
2.
Cancer Immunol Res ; 11(7): 946-961, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37257169

RESUMO

Despite the remarkable success of autologous chimeric antigen receptor (CAR) T cells, some patients relapse due to tumor antigen escape and low or uneven antigen expression, among other mechanisms. Therapeutic options after relapse are limited, emphasizing the need to optimize current approaches. In addition, there is a need to develop allogeneic "off-the-shelf" therapies from healthy donors that are readily available at the time of treatment decision and can overcome limitations of current autologous approaches. To address both challenges simultaneously, we generated a CD20xCD22 dual allogeneic CAR T cell. Herein, we demonstrate that allogeneic CD20x22 CAR T cells display robust, sustained and dose-dependent activity in vitro and in vivo, while efficiently targeting primary B-cell non-Hodgkin lymphoma (B-NHL) samples with heterogeneous levels of CD22 and CD20. Altogether, we provide preclinical proof-of-concept data for an allogeneic dual CAR T cell to overcome current mechanisms of resistance to CAR T-cell therapies in B-NHL, while providing a potential alternative to CD19 targeting.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Linfoma de Células B , Humanos , Receptores de Antígenos de Linfócitos T , Recidiva Local de Neoplasia , Linfócitos T , Linfócitos B , Imunoterapia Adotiva , Antígenos CD19
3.
Nat Commun ; 13(1): 3453, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773273

RESUMO

Universal CAR T-cell therapies are poised to revolutionize cancer treatment and to improve patient outcomes. However, realizing these advantages in an allogeneic setting requires universal CAR T-cells that can kill target tumor cells, avoid depletion by the host immune system, and proliferate without attacking host tissues. Here, we describe the development of a novel immune-evasive universal CAR T-cells scaffold using precise TALEN-mediated gene editing and DNA matrices vectorized by recombinant adeno-associated virus 6. We simultaneously disrupt and repurpose the endogenous TRAC and B2M loci to generate TCRαß- and HLA-ABC-deficient T-cells expressing the CAR construct and the NK-inhibitor named HLA-E. This highly efficient gene editing process enables the engineered T-cells to evade NK cell and alloresponsive T-cell attacks and extend their persistence and antitumor activity in the presence of cytotoxic levels of NK cell in vivo and in vitro, respectively. This scaffold could enable the broad use of universal CAR T-cells in allogeneic settings and holds great promise for clinical applications.


Assuntos
Edição de Genes , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição , Humanos , Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T
4.
FEBS Open Bio ; 12(1): 38-50, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34510816

RESUMO

The development of gene editing technologies over the past years has allowed the precise and efficient insertion of transgenes into the genome of various cell types. Knock-in approaches using homology-directed repair and designer nucleases often rely on viral vectors, which can considerably impact the manufacturing cost and timeline of gene-edited therapeutic products. An attractive alternative would be to use naked DNA as a repair template. However, such a strategy faces challenges such as cytotoxicity from double-stranded DNA (dsDNA) to primary cells. Here, we sought to study the kinetics of transcription activator-like effector nuclease (TALEN)-mediated gene editing in primary T cells to improve nonviral gene knock-in. Harnessing this knowledge, we developed a rapid and efficient gene insertion strategy based on either short single-stranded oligonucleotides or large (2 Kb) linear naked dsDNA sequences. We demonstrated that a time-controlled two-step transfection protocol can substantially improve the efficiency of nonviral transgene integration in primary T cells. Using this approach, we achieved modification of up to ˜ 30% of T cells when inserting a chimeric antigen receptor (CAR) at the T-cell receptor alpha constant region (TRAC) locus to generate 'off-the shelf' CAR-T cells.


Assuntos
Edição de Genes , Linfócitos T , Eletroporação/métodos , Edição de Genes/métodos , Mutagênese Insercional , Linfócitos T/metabolismo , Transfecção
5.
Artigo em Inglês | MEDLINE | ID: mdl-32671047

RESUMO

Here, we developed a straightforward methodology to generate TCRαß negative (allogeneic) cells for CAR-T cell therapies. With an early and transient expression of an anti-CD3 CAR in the engineered donor T cells, we programmed these cells to self-eliminate the TCR+ cell population and obtained an ultrapure TCRαß- population (99-99.9%) at the end of the CAR-T production. This novel and easy-to-implement procedure preserves the production yield and cell fitness and has the potential to streamline the manufacturing of "off-the-shelf" CAR T-cell therapies.

7.
Nat Commun ; 10(1): 5100, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31723132

RESUMO

Endowing chimeric antigen receptor (CAR) T cells with additional potent functionalities holds strong potential for improving their antitumor activity. However, because potency could be deleterious without control, these additional features need to be tightly regulated. Immune pathways offer a wide array of tightly regulated genes that can be repurposed to express potent functionalities in a highly controlled manner. Here, we explore this concept by repurposing TCR, CD25 and PD1, three major players of the T cell activation pathway. We insert the CAR into the TCRα gene (TRACCAR), and IL-12P70 into either IL2Rα or PDCD1 genes. This process results in transient, antigen concentration-dependent IL-12P70 secretion, increases TRACCAR T cell cytotoxicity and extends survival of tumor-bearing mice. This gene network repurposing strategy can be extended to other cellular pathways, thus paving the way for generating smart CAR T cells able to integrate biological inputs and to translate them into therapeutic outputs in a highly regulated manner.


Assuntos
Sistema Imunitário/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Animais , Linhagem Celular Tumoral , Edição de Genes , Humanos , Interleucina-12/genética , Ativação Linfocitária/imunologia , Camundongos , Neoplasias/imunologia , Neoplasias/patologia , Receptores de Antígenos de Linfócitos T/metabolismo , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo
8.
PLoS One ; 14(10): e0223775, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31618280

RESUMO

Pyruvate Kinase Deficiency (PKD) is a rare erythroid metabolic disease caused by mutations in the PKLR gene, which encodes the erythroid specific Pyruvate Kinase enzyme. Erythrocytes from PKD patients show an energetic imbalance and are susceptible to hemolysis. Gene editing of hematopoietic stem cells (HSCs) would provide a therapeutic benefit and improve safety of gene therapy approaches to treat PKD patients. In previous studies, we established a gene editing protocol that corrected the PKD phenotype of PKD-iPSC lines through a TALEN mediated homologous recombination strategy. With the goal of moving toward more clinically relevant stem cells, we aim at editing the PKLR gene in primary human hematopoietic progenitors and hematopoietic stem cells (HPSCs). After nucleofection of the gene editing tools and selection with puromycin, up to 96% colony forming units showed precise integration. However, a low yield of gene edited HPSCs was associated to the procedure. To reduce toxicity while increasing efficacy, we worked on i) optimizing gene editing tools and ii) defining optimal expansion and selection times. Different versions of specific nucleases (TALEN and CRISPR-Cas9) were compared. TALEN mRNAs with 5' and 3' added motifs to increase RNA stability were the most efficient nucleases to obtain high gene editing frequency and low toxicity. Shortening ex vivo manipulation did not reduce the efficiency of homologous recombination and preserved the hematopoietic progenitor potential of the nucleofected HPSCs. Lastly, a very low level of gene edited HPSCs were detected after engraftment in immunodeficient (NSG) mice. Overall, we showed that gene editing of the PKLR gene in HPSCs is feasible, although further improvements must to be done before the clinical use of the gene editing to correct PKD.


Assuntos
Edição de Genes/métodos , Células-Tronco Hematopoéticas/citologia , Piruvato Quinase/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Animais , Células Cultivadas , Células HEK293 , Células-Tronco Hematopoéticas/química , Humanos , Camundongos
9.
BMC Biotechnol ; 19(1): 44, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31269942

RESUMO

BACKGROUND: Engineered therapeutic cells have attracted a great deal of interest due to their potential applications in treating a wide range of diseases, including cancer and autoimmunity. Chimeric antigen receptor (CAR) T-cells are designed to detect and kill tumor cells that present a specific, predefined antigen. The rapid expansion of targeted antigen beyond CD19, has highlighted new challenges, such as autoactivation and T-cell fratricide, that could impact the capacity to manufacture engineered CAR T-cells. Therefore, the development of strategies to control CAR expression at the surface of T-cells and their functions is under intense investigations. RESULTS: Here, we report the development and evaluation of an off-switch directly embedded within a CAR construct (SWIFF-CAR). The incorporation of a self-cleaving degradation moiety controlled by a protease/protease inhibitor pair allowed the ex vivo tight and reversible control of the CAR surface presentation and the subsequent CAR-induced signaling and cytolytic functions of the engineered T-cells using the cell permeable Asunaprevir (ASN) small molecule. CONCLUSIONS: The strategy described in this study could, in principle, be broadly adapted to CAR T-cells development to circumvent some of the possible hurdle of CAR T-cell manufacturing. This system essentially creates a CAR T-cell with an integrated functional rheostat.


Assuntos
Antígenos CD19/imunologia , Expressão Gênica/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Antígenos CD19/genética , Antígenos CD19/metabolismo , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Humanos , Isoquinolinas/farmacologia , Inibidores de Proteases/farmacologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Sulfonamidas/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
10.
J Biol Chem ; 294(14): 5430-5437, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30804212

RESUMO

Chimeric antigen receptor T-cell (CAR T-cell) therapy has been shown to be clinically effective for managing a variety of hematological cancers. However, CAR T-cell therapy is associated with multiple adverse effects, including neurotoxicity and cytokine release syndrome (CRS). CRS arises from massive cytokine secretion and can be life-threatening, but it is typically managed with an anti-IL-6Ra mAb or glucocorticoid administration. However, these treatments add to a patient's medication burden and address only the CRS symptoms. Therefore, alternative strategies that can prevent CRS and neurotoxicity associated with CAR T-cell treatment are urgently needed. Here, we explored a therapeutic route aimed at preventing CRS rather than limiting its consequences. Using a cytokine-profiling assay, we show that granulocyte-macrophage colony-stimulating factor (GMCSF) is a key CRS-promoting protein. Through a combination of in vitro experiments and gene-editing technology, we further demonstrate that antibody-mediated neutralization or TALEN-mediated genetic inactivation of GMCSF in CAR T-cells drastically decreases available GMCSF and abolishes macrophage-dependent secretion of CRS biomarkers, including monocyte chemoattractant protein 1 (MCP-1), interleukin (IL) 6, and IL-8. Of note, we also found that the genetic inactivation of GMCSF does not impair the antitumor function or proliferative capacity of CAR T-cells in vitro We conclude that it is possible to prevent CRS by using "all-in-one" GMCSF-knockout CAR T-cells. This approach may eliminate the need for anti-CRS treatment and may improve the overall safety of CAR T-cell therapies for cancer patients.


Assuntos
Citocinas/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/terapia , Imunoterapia Adotiva , Monócitos , Proteínas de Neoplasias/imunologia , Antineoplásicos Imunológicos/imunologia , Antineoplásicos Imunológicos/farmacologia , Citocinas/genética , Edição de Genes , Técnicas de Silenciamento de Genes , Glucocorticoides/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Humanos , Monócitos/imunologia , Monócitos/patologia , Proteínas de Neoplasias/genética , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia
11.
Sci Rep ; 8(1): 8972, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895885

RESUMO

CAR T-cell therapies hold great promise for treating a range of malignancies but are however challenged by the complexity of their production and by the adverse events related to their activity. Here we report the development of the CubiCAR, a tri-functional CAR architecture that enables CAR T-cell detection, purification and on-demand depletion by the FDA-approved antibody Rituximab. This novel architecture has the potential to streamline the manufacturing of CAR T-cells, allow their tracking and improve their overall safety.


Assuntos
Imunoterapia Adotiva , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/cirurgia , Receptores de Antígenos Quiméricos/imunologia , Rituximab/farmacologia , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/patologia
12.
Bull Cancer ; 105 Suppl 2: S178-S187, 2018 Dec.
Artigo em Francês | MEDLINE | ID: mdl-30686356

RESUMO

DEVELOPMENT OF CAR T-CELLS IN SOLID TUMORS: CHALLENGES AND PERSPECTIVES: While Chimeric Antigen Receptor (CAR) T-cells have shown outstanding results in some hematologic malignancies, studies in solid tumors are less encouraging with poor response rates. Several factors can account for this lack of efficiency in solid tumors: heterogeneous expression or absence of specific target antigen (and so higher risk of toxicity), immunosuppressive microenvironment, homing and tumoral trafficking issues or lack of CAR T-cell persistence. Different approaches can be considered to overcome these resistance mechanisms: bispecific CARs, use of logic gates, combination with immune checkpoint inhibitors, engineered CAR T-cells resistant to immunosuppressive molecules, addition of chemokines or enzymes, combination with oncolytic virus, intra-tumoral administration, selection of memory T cell subpopulations and development of armored CAR T-cells secreting cytokines such as IL-12, -15 or -18. Last generation optimized CAR T-cell design should thus improve therapeutic efficiency. CAR-T cells may represent in a near future a therapeutic breakthrough also in solid tumors, especially in cold tumors and/or tumors lacking MHC class I expression. Cet article fait partie du numéro supplément Les cellules CAR-T : une révolution thérapeutique ? réalisé avec le soutien institutionnel des partenaires Gilead : Kite et Celgene.


Assuntos
Imunoterapia Adotiva/métodos , Neoplasias/terapia , Receptores de Antígenos Quiméricos , Especificidade de Anticorpos/imunologia , Ensaios Clínicos como Assunto , Humanos , Interleucina-12/metabolismo , Interleucina-15/metabolismo , Interleucina-18/metabolismo , Neoplasias/imunologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Retorno de Linfócitos/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T/imunologia , Resultado do Tratamento , Microambiente Tumoral/imunologia
13.
Mol Ther Nucleic Acids ; 9: 312-321, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29246309

RESUMO

Using a TALEN-mediated gene-editing approach, we have previously described a process for the large-scale manufacturing of "off-the-shelf" CAR T cells from third-party donor T cells by disrupting the gene encoding TCRα constant chain (TRAC). Taking advantage of a previously described strategy to control TALEN targeting based on the exclusion capacities of non-conventional RVDs, we have developed highly efficient and specific nucleases targeting a key T cell immune checkpoint, PD-1, to improve engineered CAR T cells' functionalities. Here, we demonstrate that this approach allows combined TRAC and PDCD1 TALEN processing at the desired locus while eliminating low-frequency off-site processing. Thus, by replacing few RVDs, we provide here an easy and rapid redesign of optimal TALEN combinations. We anticipate that this method can greatly benefit multiplex editing, which is of key importance especially for therapeutic applications where high editing efficiencies need to be associated with maximal specificity and safety.

14.
Sci Rep ; 7: 39833, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-28106050

RESUMO

A key to the success of chimeric antigen receptor (CAR) T-cell based therapies greatly rely on the capacity to identify and target antigens with expression restrained to tumor cells. Here we present a strategy to generate CAR T-cells that are only effective locally (tumor tissue), potentially also increasing the choice of targetable antigens. By fusing an oxygen sensitive subdomain of HIF1α to a CAR scaffold, we generated CAR T-cells that are responsive to a hypoxic environment, a hallmark of certain tumors. Along with the development of oxygen-sensitive CAR T-cells, this work also provides a basic framework to use a multi-chain CAR as a platform to create the next generation of smarter self-decision making CAR T-cells.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Oxigênio/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Proteínas Recombinantes de Fusão/genética , Linfócitos T Citotóxicos/fisiologia , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Engenharia Genética , Humanos , Ativação Linfocitária , Neoplasias/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T , Linfócitos T Citotóxicos/transplante , Microambiente Tumoral
15.
Cancer Res ; 76(8): 2087-93, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-27197251

RESUMO

Despite the promising efficacy of adoptive cell therapies (ACT) in melanoma, complete response rates remain relatively low and outcomes in other cancers are less impressive. The immunosuppressive nature of the tumor microenvironment and the expression of immune-inhibitory ligands, such as PD-L1/CD274 by the tumor and stroma are considered key factors limiting efficacy. The addition of checkpoint inhibitors (CPI) to ACT protocols bypasses some mechanisms of immunosuppression, but associated toxicities remain a significant concern. To overcome PD-L1-mediated immunosuppression and reduce CPI-associated toxicities, we used TALEN technology to render tumor-reactive T cells resistant to PD-1 signaling. Here, we demonstrate that inactivation of the PD-1 gene in melanoma-reactive CD8(+) T cells and in fibrosarcoma-reactive polyclonal T cells enhanced the persistence of PD-1 gene-modified T cells at the tumor site and increased tumor control. These results illustrate the feasibility and potency of approaches incorporating advanced gene-editing technologies into ACT protocols to silence immune checkpoints as a strategy to overcome locally active immune escape pathways. Cancer Res; 76(8); 2087-93. ©2016 AACR.


Assuntos
Linfócitos do Interstício Tumoral/imunologia , Receptor de Morte Celular Programada 1/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Fibrossarcoma/imunologia , Inativação Gênica , Ativação Linfocitária , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor de Morte Celular Programada 1/genética , Transdução de Sinais , Transfecção , Microambiente Tumoral/imunologia
16.
Sci Rep ; 6: 18950, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26750734

RESUMO

The ability to control T cells engineered to permanently express chimeric antigen receptors (CARs) is a key feature to improve safety. Here, we describe the development of a new CAR architecture with an integrated switch-on system that permits to control the CAR T-cell function. This system offers the advantage of a transient CAR T-cell for safety while letting open the possibility of multiple cytotoxicity cycles using a small molecule drug.


Assuntos
Citotoxicidade Imunológica/efeitos dos fármacos , Engenharia Genética/métodos , Proteínas Mutantes Quiméricas/genética , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/imunologia , Antígenos CD8/genética , Antígenos CD8/imunologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/imunologia , Humanos , Proteínas Mutantes Quiméricas/imunologia , Domínios Proteicos , Receptores de Antígenos de Linfócitos T/imunologia , Anticorpos de Cadeia Única/genética , Sirolimo/análogos & derivados , Sirolimo/farmacologia , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Tacrolimo/farmacologia , Transfecção
17.
Stem Cell Reports ; 5(6): 1053-1066, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26549847

RESUMO

Pyruvate kinase deficiency (PKD) is a rare erythroid metabolic disease caused by mutations in the PKLR gene. Erythrocytes from PKD patients show an energetic imbalance causing chronic non-spherocytic hemolytic anemia, as pyruvate kinase defects impair ATP production in erythrocytes. We generated PKD induced pluripotent stem cells (PKDiPSCs) from peripheral blood mononuclear cells (PB-MNCs) of PKD patients by non-integrative Sendai viral vectors. PKDiPSCs were gene edited to integrate a partial codon-optimized R-type pyruvate kinase cDNA in the second intron of the PKLR gene by TALEN-mediated homologous recombination (HR). Notably, we found allele specificity of HR led by the presence of a single-nucleotide polymorphism. High numbers of erythroid cells derived from gene-edited PKDiPSCs showed correction of the energetic imbalance, providing an approach to correct metabolic erythroid diseases and demonstrating the practicality of this approach to generate the large cell numbers required for comprehensive biochemical and metabolic erythroid analyses.


Assuntos
Anemia Hemolítica Congênita não Esferocítica/genética , Anemia Hemolítica Congênita não Esferocítica/terapia , Células Eritroides/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Piruvato Quinase/deficiência , Piruvato Quinase/genética , Erros Inatos do Metabolismo dos Piruvatos/genética , Erros Inatos do Metabolismo dos Piruvatos/terapia , Alelos , Sequência de Bases , Contagem de Células , DNA Complementar/genética , Células Eritroides/metabolismo , Marcação de Genes , Terapia Genética , Humanos , Leucócitos Mononucleares/metabolismo , Recombinação Genética
18.
Cancer Res ; 75(18): 3853-64, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26183927

RESUMO

Adoptive immunotherapy using autologous T cells endowed with chimeric antigen receptors (CAR) has emerged as a powerful means of treating cancer. However, a limitation of this approach is that autologous CAR T cells must be generated on a custom-made basis. Here we show that electroporation of transcription activator-like effector nuclease (TALEN) mRNA allows highly efficient multiplex gene editing in primary human T cells. We use this TALEN-mediated editing approach to develop a process for the large-scale manufacturing of T cells deficient in expression of both their αß T-cell receptor (TCR) and CD52, a protein targeted by alemtuzumab, a chemotherapeutic agent. Functionally, T cells manufactured with this process do not mediate graft-versus-host reactions and are rendered resistant to destruction by alemtuzumab. These characteristics enable the administration of alemtuzumab concurrently or prior to engineered T cells, supporting their engraftment. Furthermore, endowing the TALEN-engineered cells with a CD19 CAR led to efficient destruction of CD19(+) tumor targets even in the presence of the chemotherapeutic agent. These results demonstrate the applicability of TALEN-mediated genome editing to a scalable process, which enables the manufacturing of third-party CAR T-cell immunotherapies against arbitrary targets. As such, CAR T-cell immunotherapies can therefore be used in an "off-the-shelf" manner akin to other biologic immunopharmaceuticals


Assuntos
Técnicas de Inativação de Genes , Imunoterapia Adotiva , Linfócitos T/transplante , Alemtuzumab , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais Humanizados/farmacologia , Antígenos CD/genética , Antígenos CD19/imunologia , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Sequência de Bases , Antígeno CD52 , Citotoxicidade Imunológica , Resistência a Medicamentos , Glicoproteínas/deficiência , Glicoproteínas/genética , Doença Enxerto-Hospedeiro/prevenção & controle , Humanos , Ativação Linfocitária , Linfoma/terapia , Camundongos , Camundongos Mutantes , Dados de Sequência Molecular , RNA Mensageiro , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/deficiência , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Mol Ther ; 23(9): 1507-18, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26061646

RESUMO

The adoptive transfer of chimeric antigen receptor (CAR) T cell represents a highly promising strategy to fight against multiple cancers. The clinical outcome of such therapies is intimately linked to the ability of effector cells to engraft, proliferate, and specifically kill tumor cells within patients. When allogeneic CAR T-cell infusion is considered, host versus graft and graft versus host reactions must be avoided to prevent rejection of adoptively transferred cells, host tissue damages and to elicit significant antitumoral outcome. This work proposes to address these three requirements through the development of multidrug-resistant T cell receptor αß-deficient CAR T cells. We demonstrate that these engineered T cells displayed efficient antitumor activity and proliferated in the presence of purine and pyrimidine nucleoside analogues, currently used in clinic as preconditioning lymphodepleting regimens. The absence of TCRαß at their cell surface along with their purine nucleotide analogues-resistance properties could prevent their alloreactivity and enable them to resist to lymphodepleting regimens that may be required to avoid their ablation via HvG reaction. By providing a basic framework to develop a universal T cell compatible with allogeneic adoptive transfer, this work is laying the foundation stone of the large-scale utilization of CAR T-cell immunotherapies.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Resistência a Múltiplos Medicamentos/genética , Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T/genética , Proteínas Recombinantes de Fusão/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Antígenos CD19/genética , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Combinada , Citotoxicidade Imunológica , Desoxicitidina Quinase/deficiência , Desoxicitidina Quinase/genética , Expressão Gênica , Inativação Gênica , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Concentração Inibidora 50 , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Teste de Cultura Mista de Linfócitos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/deficiência , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Proteínas Recombinantes de Fusão/metabolismo , Linfócitos T/efeitos dos fármacos , Transplante Homólogo
20.
Sci Rep ; 5: 8150, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25632877

RESUMO

A key feature when designing DNA targeting tools and especially nucleases is specificity. The ability to control and tune this important parameter represents an invaluable advance to the development of such molecular scissors. Here, we identified and characterized new non-conventional RVDs (ncRVDs) that possess novel intrinsic targeting specificity features. We further report a strategy to control TALEN targeting based on the exclusion capacities of ncRVDs (discrimination between different nucleotides). By implementing such ncRVDs, we demonstrated in living cells the possibility to efficiently promote TALEN-mediated processing of a target in the HBB locus and alleviate undesired off-site cleavage. We anticipate that this method can greatly benefit to designer nucleases, especially for therapeutic applications and synthetic biology.


Assuntos
Desoxirribonucleases/metabolismo , Repetições de Dinucleotídeos , Marcação de Genes , Sequência de Bases , Linhagem Celular , Hemoglobinas/química , Hemoglobinas/genética , Humanos , Hidrólise , Dados de Sequência Molecular , Especificidade por Substrato , Leveduras/genética , Leveduras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...