Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; : e0148723, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37655909

RESUMO

Microbial extracellular subtilases are highly active proteolytic enzymes commonly used in commercial applications. These subtilases are synthesized in their inactive proform, which matures into the active protease under the control of the propeptide domain. In mesophilic bacterial prosubtilases, the propeptide functions as both an obligatory chaperone and an inhibitor of the subtilase catalytic domain. In contrast, the propeptides of hyperthermophilic archaeal prosubtilases act mainly as tight inhibitors and are not essential for subtilase folding. It is unclear whether this stronger inhibitory activity of hyperthermophilic propeptides results in their higher selectivity toward their cognate subtilases, in contrast to promiscuous mesophilic propeptides. Here, we showed that the propeptide of pernisine, a hyperthermostable archaeal subtilase, strongly interacts with and inhibits pernisine, but not the homologous subtilisin Carlsberg and proteinase K. Instead, the pernisine propeptide was readily degraded by subtilisin Carlsberg and proteinase K. In addition, the catalytic domain of unprocessed propernisine was also susceptible to degradation but became proteolytically stable after autoprocessing of propernisine into the inactive, noncovalent complex propeptide:pernisine. This allowed efficient transactivation of the autoprocessed complex propeptide:pernisine through degradation of pernisine propeptide by subtilisin Carlsberg and proteinase K at mesophilic temperature. Moreover, we demonstrated that active pernisine molecules are inhibited by the propeptide that is released after pernisine-catalyzed degradation of the unprocessed propernisine catalytic domain. This highlights the high inhibitory potency of the hyperthermophilic propeptide toward its cognate subtilase and its importance in regulating subtilase maturation, to prevent the degradation of the unprocessed subtilase precursors by the prematurely activated molecules. IMPORTANCE Many microorganisms secrete proteases into their environment to degrade protein substrates for their growth. The important group of these extracellular enzymes are subtilases, which are also widely used in practical applications. These subtilases are inhibited by their propeptide domain, which is degraded during the prosubtilase maturation process. Here, we showed that the propeptide of pernisine, a prion-degrading subtilase from the hyperthermophilic archaeon, strongly inhibits pernisine with extraordinarily high binding affinity. This interaction proved to be highly selective, as pernisine propeptide was rapidly degraded by mesophilic pernisine homologs. This in turn allowed rapid transactivation of propernisine by mesophilic subtilases at lower temperatures, which might simplify the procedures for preparation of active pernisine for commercial use. The results reported in this study suggest that the hyperthermophilic subtilase propeptide evolved to function as tight and selective regulator of maturation of the associated prosubtilase to prevent its premature activation under high temperatures.

2.
Antioxidants (Basel) ; 12(2)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36829841

RESUMO

Antioxidants are various types of compounds that represent a link between biology and chemistry. With the development of theoretical and computational methods, antioxidants are now being studied theoretically. Here, a novel method is presented that aims to reduce the estimated wall times for DFT calculations that result in the same or higher degree of accuracy in the second derivatives over energy than is the case with the regular computational route (i.e., optimizing the reaction system at a lower model and then recalculating the energies at a higher level of theory) by applying the inversion of theory level to the universal chemical scavenger model, i.e., phenol. The resulting accuracy and wall time obtained with such a methodological setup strongly suggest that this methodology could be generally applied to antioxidant thermodynamics for some costly DFT methods with relative absolute deviation.

3.
ACS Omega ; 8(3): 2861-2870, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36713696

RESUMO

Archaeosomes are vesicles made from archaeal lipids. They are characterized by remarkable thermostability, resistance to enzymatic degradation, long-term stability, and immunomodulatory properties. In this review the current status of physicochemical properties of archaeal lipids and their stability in biological systems is presented, focusing on total polar lipids from Aeropyrum pernix K1. The isolated total polar lipids from Aeropyrum pernix K1 consist exclusively of glycerol ether lipids with isoprenoid groups attached to glycerol via ether linkages. More specifically, the two major polar lipids extracted from the membranes are C25,25-achaetidyl(glucosyl)inositol and C25,25-achaetidylinositol. An overview of the results of the effects of temperature and pH on the stability, structural organization, fluidity, and permeability of archaeosomes composed of pure C25,25 was examined by a combination of techniques, including fluorescence emission spectroscopy, electron paramagnetic resonance, differential scanning calorimetry, and confocal microscopy. We also compared the physicochemical properties of pure vesicles composed of either archaeal lipids or conventional lipids (e.g., 1,2-dipalmitoyl-sn-glycero-3-phosphocholine) with mixed vesicles composed of both lipid types. Archaeal lipids are discussed in terms of their potential use as a targeted drug delivery system based on the results of in vivo and cytotoxicity studies.

4.
Foods ; 11(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36140867

RESUMO

Pomegranate fruit is an ancient fruit that is used not only because of its deep-red color and tasty arils but also due to the health benefits of its extracts. Pomegranate is a valuable source of bioactive compounds, including colorful anthocyanins and other polyphenols. The main objective of the present study was to gain comprehensive knowledge of the phenolic composition and antioxidative activity of a new pomegranate cultivar, grown in Northwest Istria, a part of the North Adriatic coastal area. Various parts of the pomegranate fruit parts were extracted in 70% ethanol or water. Total phenolic content and antioxidative capacity were respectively determined with Folin-Ciocalteu reagent and ABTS radical. Phenolics were examined and analyzed with TLC, LC-MS, and HPLC. Pomegranate juice was prepared from red arils and after thermal treatment, the stability of anthocyanins was monitored for several months to understand the effect of storage. The highest total phenolics were determined in ethanol pomegranate peel extracts (30.5 ± 0.6 mg GAE/g DM), and water peel extracts exhibited the highest antioxidative activity (128 ± 2 µg TE/g DM). After five months of storage of thermally treated pomegranate juice, 50-60 percentage points increase in anthocyanin degradation was observed. Pomegranate peel was further tested as a sustainable inedible food source for papermaking. Due to the low content of cellulose and the high percentage of extractives, as well as a distinguished texture and appearance, the paper made from pomegranate peel is best suited for the production of specialty papers, making it particularly interesting for bioactives recovery, followed by material restructuring.

5.
Polymers (Basel) ; 14(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36015498

RESUMO

Obtaining good-quality gluten-free products represents a technological challenge; thus, it is important to understand how and why the addition of hydrocolloids influences the properties of starch-based products. To obtain insight into the physicochemical changes imparted by hydrocolloids on gluten-free dough, we prepared several suspensions with different corn starch/potato starch/hydroxpropyl methyl cellulose/xanthan gum/water ratios. Properties of the prepared samples were determined by differential scanning calorimetry and rheometry. Samples with different corn/potato starch ratios exhibited different thermal properties. Xanthan gum and HPMC (hydroxypropyl methyl cellulose) exhibited a strong influence on the rheological properties of the mixtures since they increased the viscosity and elasticity. HPMC and xanthan gum increased the temperature of starch gelatinization, as well as they increased the viscoelasticity of the starch model system. Although the two hydrocolloids affected the properties of starch mixtures in the same direction, the magnitude of their effects was different. Our results indicate that water availability, which plays a crucial role in the starch gelatinization process, could be modified by adding hydrocolloids such as, hydroxypropyl methyl cellulose and xanthan gum. By adding comparatively small amounts of the studied hydrocolloids to starch, one can achieve similar thermo-mechanical effects by the addition of gluten. Understanding these effects of hydrocolloids could contribute to the development of better quality gluten-free bread with optimized ingredient content.

6.
Int J Mol Sci ; 23(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35806461

RESUMO

Tetraethyl-orthosilicate (TEOS)-based nanoparticles are most extensively used as a silica-based hemoglobin carrier system. However, TEOS-based nanoparticles induce adverse effects on the hemoglobin structure. Therefore, a heulandite-calcium-based carrier was investigated as a novel silica-based hemoglobin carrier system. The heulandite-calcium mesoporous aluminosilicate particles (MSPs) were fabricated by a patented tribo-mechanical activation process, according to the manufacturer, and its structure was assessed by X-ray diffraction analysis. Upon hemoglobin encapsulation, alternation in the secondary and tertiary structure was observed. The hemoglobin-particle interactions do not cause heme degradation or decreased activity. Once encapsulated inside the particle pores, the hemoglobin shows increased thermal stability, and higher loading capacity per gram of particles (by a factor of >1.4) when compared to TEOS-based nanoparticles. Futhermore, we introduced a PEGlyted lipid bilayer which significantly decreases the premature hemoglobin release and increases the colloidal stability. The newly developed hemoglobin carrier shows no cytotoxicity to human umbilical vein endothelial cells (HUVEC).


Assuntos
Substitutos Sanguíneos , Aluminossilicato de Cálcio , Nanopartículas , Humanos , Silicatos de Alumínio , Cálcio , Células Endoteliais , Hemoglobinas , Nanopartículas/química , Porosidade , Dióxido de Silício/química
7.
Biochim Biophys Acta Biomembr ; 1864(10): 183999, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35820494

RESUMO

(-)-Epigallocatechin-3-gallate (EGCG) is a flavonoid known for its good antioxidant potential and health benefits. It is one of the most intriguing flavonoids, especially because of its specific interactions with model lipid membranes. It was noticed that EGCG might form EGCG rich domains/rafts at certain compositions of lipid membranes. In this article, we investigate whether EGCG forms EGCG rich domains when incorporated in 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) liposomes. Our results show that EGCG decreases lipid ordering parameter in ordered membranes and increases it in the case of disordered ones. Also, incorporation of EGCG does not affect the zeta-potential and shape of the liposomes, but it can induce aggregation of liposomes. Our study also demonstrates that liposomes with incorporated EGCG are highly protected against UV-light induced oxidation.


Assuntos
Catequina , Lipossomos , Antioxidantes , Catequina/análogos & derivados , Lipídeos
8.
Life (Basel) ; 12(6)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35743856

RESUMO

DNA sequences that are rich in guanines and can form four-stranded structures are called G-quadruplexes. Due to the growing evidence that they may play an important role in several key biological processes, the G-quadruplexes have captured the interest of several researchers. G-quadruplexes may form in the presence of different metal cations as polymorphic structures formed in kinetically governed processes. Here we investigate a complex polymorphism of d(G4T4G3) quadruplexes at different K+ concentrations. We show that population size of different d(G4T4G3) quadruplex conformations can be manipulated by cooling rate and/or K+ concentration. We use a kinetic model to describe data obtained from DSC, CD and UV spectroscopy and PAGE experiments. Our model is able to describe the observed thermally induced conformational transitions of d(G4T4G3) quadruplexes at different K+ concentrations.

9.
Front Nutr ; 9: 794468, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35187031

RESUMO

Branded food composition databases are an important tool for research, education, healthcare, and policy making, amongst others. Such databases are typically compiled using food labeling data without chemical analyses of specific products. This study aimed to verify whether the labeled sugar content in sugar-sweetened beverages (SSBs) corresponds to the actual sugar content in these products, thus enabling food monitoring studies to be conducted. A secondary objective was to determine the specific types of sugars in these SSBs. A case study was conducted using market share-driven sampling of these beverages from the Slovenian food supply. On the basis of nationwide yearly sales data, 51 best-selling products were sampled in 2020 and analyzed using high-performance liquid chromatography. This sales-driven approach to sampling has been shown to be very useful for conducting food monitoring studies. With the careful selection of a small proportion of available products, we finished with a manageable sample size, reflecting the composition of a majority (69%) of the national market share volume. The analyzed total sugar content was compared with labeled data, within the context of the European Union's regulatory labeling tolerances. In all samples, the sugar content was within the tolerance levels. The most common (N = 41) deviation was within ±10% of the labeled sugar content. In the subcategories, the differences between the analyzed and labeled median sugar contents were not statistically significant. Sucrose was most commonly (N = 36; 71%) used for sweetening, suggesting that the proportion of fructose in most SSBs was around 50%. A higher fructose content was only observed in beverages with fructose-glucose syrup or a higher content of fruit juice. The study results show that the labeled sugar content information in SSBs is reliable and can be used to compile branded food databases and monitor the nutritional quality of foods in the food supply.

10.
Antioxidants (Basel) ; 11(2)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35204099

RESUMO

Lactic acid fermentation (LAF) is known to improve nutritional properties and functionality and to extend the shelf life of foods. We studied the LAF of Arthrospira platensis as the sole substrate using Lactobacillus plantarum as the starter culture. Fermented (FB) and non-fermented broth (NFB) were analysed by means of pH, lactic acid bacteria (LAB) count, lactic acid concentration, microbiological safety, and nutritional composition. Additionally, water and ethanol extracts were prepared on which total phenolic content, DPPH radical scavenging activity, and cellular antioxidant activity were determined. The maximum increase in LAB count and lactic acid concentration and drop in pH was observed in the first 24 h of fermentation. Total phenolic content and DPPH radical scavinging activity of ethanol extracts increased after fermentation compared with NFB. Ethanol extracts of FB have been shown as a potential source of antioxidants, which efficiently lowered oxidation level in the cells of yeast Saccharomyces cerevisiae, as well as the oxidative damage of lipids. Additionally, the level of non-protein nitrogen increased, indicating higher protein bioavailability, and fat content decreased in comparison with NFB. No presence of pathogenic bacteria and low pH indicate enhancement of FB microbiological stability. Therefore, inclusion of fermented A. platensis into food products could lead to added-value foods based on microalgae.

11.
Food Chem ; 373(Pt B): 131594, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34838409

RESUMO

The abundance of polyphenols in edible plants makes them an important component of human nutrition. Considering the ongoing COVID-19 pandemic, a number of studies have investigated polyphenols as bioactive constituents. We applied in-silico molecular docking as well as molecular dynamics supported by in-vitro assays to determine the inhibitory potential of various plant polyphenols against an important SARS-CoV-2 therapeutic target, the protease 3CLpro. Of the polyphenols in initial in-vitro screening, quercetin, ellagic acid, curcumin, epigallocatechin gallate and resveratrol showed IC50 values of 11.8 µM to 23.4 µM. In-silico molecular dynamics simulations indicated stable interactions with the 3CLpro active site over 100 ns production runs. Moreover, surface plasmon resonance spectroscopy was used to measure the binding of polyphenols to 3CLpro in real time. Therefore, we provide evidence for inhibition of SARS-CoV-2 3CLpro by natural plant polyphenols, and suggest further research into the development of these novel 3CLpro inhibitors or biochemical probes.


Assuntos
Proteases 3C de Coronavírus/antagonistas & inibidores , Polifenóis , SARS-CoV-2/efeitos dos fármacos , Simulação de Acoplamento Molecular , Peptídeo Hidrolases , Polifenóis/farmacologia
12.
Molecules ; 26(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34946575

RESUMO

Adverse environmental conditions are severely limiting the use of microorganisms in food systems, such as probiotic delivery, where low pH causes a rapid decrease in the survival of ingested bacteria, and mixed-culture fermentation, where stepwise changes and/or metabolites of individual microbial groups can hinder overall growth and production. In our study, model probiotic lactic acid bacteria (L. plantarum ATCC 8014, L. rhamnosus GG) and yeasts native to dairy mixed cultures (K. marxianus ZIM 1868) were entrapped in an optimized (cell, alginate and hardening solution concentration, electrostatic working parameters) Ca-alginate system. Encapsulated cultures were examined for short-term survival in the absence of nutrients (lactic acid bacteria) and long-term performance in acidified conditions (yeasts). In particular, the use of encapsulated yeasts in these conditions has not been previously examined. Electrostatic manufacturing allowed for the preparation of well-defined alginate microbeads (180-260 µm diameter), high cell-entrapment (95%) and viability (90%), and uniform distribution of the encapsulated cells throughout the hydrogel matrix. The entrapped L. plantarum maintained improved viabilities during 180 min at pH 2.0 (19% higher when compared to the free culture), whereas, L. rhamnosus appeared to be less robust. The encapsulated K. marxianus exhibited double product yields in lactose- and lactic acid-modified MRS growth media (compared to an unfavorable growth environment for freely suspended cells). Even within a conventional encapsulation system, the pH responsive features of alginate provided superior protection and production of encapsulated yeasts, allowing several applications in lacto-fermented or acidified growth environments, further options for process optimization, and novel carrier design strategies based on inhibitor charge expulsion.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Hidrogéis/farmacologia , Polissacarídeos/farmacologia , Substâncias Protetoras/farmacologia , Antibacterianos/química , Antifúngicos/química , Hidrogéis/química , Concentração de Íons de Hidrogênio , Kluyveromyces/efeitos dos fármacos , Lactobacillus plantarum/efeitos dos fármacos , Lacticaseibacillus rhamnosus/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Polissacarídeos/química , Substâncias Protetoras/química
13.
Foods ; 10(11)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34829121

RESUMO

In general, sourdough fermentation leads to an improvement in the technological, nutritional, and sensory properties of bakery products. The use of non-conventional flours with a specific autochthonous microbiota may lead to the formation of secondary metabolites, which may even have undesirable physiological and toxicological effects. Chickpea flours from different suppliers have been used to produce sourdoughs by spontaneous and inoculated fermentations. The content of nutritionally undesirable biogenic amines (BA) and beneficial gamma-aminobutyric acid (GABA) was determined by chromatography. Fenugreek sprouts, which are a rich source of amine oxidases, were used to reduce the BA content in the sourdoughs. Spontaneous fermentation resulted in a high accumulation of cadaverine, putrescine, and tyramine for certain flours. The use of commercial starter cultures was not effective in reducing the accumulation of BA in all sourdoughs. The addition of fenugreek sprouts to the suspension of sourdough with pH raised to 6.5 resulted in a significant reduction in BA contents. Enzymatic oxidation was less efficient during kneading. Baking resulted in only a partial degradation of BA and GABA in the crust and not in the crumb. Therefore, it could be suggested to give more importance to the control of sourdough fermentation with regard to the formation of nutritionally undesirable BA and to exploit the possibilities of their degradation.

14.
Int J Mol Sci ; 22(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34681923

RESUMO

Lactoferrins are an iron-binding glycoprotein that have important protective roles in the mammalian body through their numerous functions, which include antimicrobial, antitumor, anti-inflammatory, immunomodulatory, and antioxidant activities. Among these, their antimicrobial activity has been the most studied, although the mechanism behind antimicrobial activities remains to be elucidated. Thirty years ago, the first lactoferrin-derived peptide was isolated and showed higher antimicrobial activity than the native lactoferrin lactoferricin. Since then, numerous studies have investigated the antimicrobial potencies of lactoferrins, lactoferricins, and other lactoferrin-derived peptides to better understand their antimicrobial activities at the molecular level. This review defines the current antibacterial, antiviral, antifungal, and antiparasitic activities of lactoferrins, lactoferricins, and lactoferrin-derived peptides. The primary focus is on their different mechanisms of activity against bacteria, viruses, fungi, and parasites. The role of their structure, amino-acid composition, conformation, charge, hydrophobicity, and other factors that affect their mechanisms of antimicrobial activity are also reviewed.


Assuntos
Anti-Infecciosos/farmacologia , Lactoferrina/farmacologia , Peptídeos/farmacologia , Animais , Anti-Infecciosos/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lactoferrina/química , Estrutura Molecular , Relação Estrutura-Atividade
15.
Antioxidants (Basel) ; 10(9)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34572998

RESUMO

Spirulina is rich in various antioxidants and nutraceuticals and it has proven to be effective in the treatment of various pathological conditions. This study explores the antioxidant effect of fermented and non-fermented Spirulina extracts on the proteome level using the yeast Saccharomyces cerevisiae as a model organism. Yeast cells were treated with fermented Spirulina water extract (SV), non-fermented Spirulina water extract (NFV), fermented Spirulina ethanol extract (SE), and non-fermented Spirulina ethanol extract (NFE). Cell lysates were prepared, and label-free quantitative proteome analysis was performed. In SV, when compared to NFV samples, the levels of most differentially expressed proteins were upregulated. Alternatively, SE compared to NFE samples showed a significant downregulation for the majority of the analyzed proteins involved in different cellular processes. Additionally, a higher downregulation of stress response related proteins was observed in SE compared to NFE samples, while their abundance in SV samples increased compared to NFV. This study provided a global view, on a proteome level, of how cells cope with exogenous antioxidants and remodel their cellular processes to maintain metabolic and redox balance. Furthermore, it combined for the first time the analysis of different extract effect, including the contribution of lactic acid fermentation to the cell activity.

16.
Int J Mol Sci ; 22(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207189

RESUMO

Studying the interactions between lipid membranes and various bioactive molecules (e.g., polyphenols) is important for determining the effects they can have on the functionality of lipid bilayers. This knowledge allows us to use the chosen compounds as potential inhibitors of bacterial and cancer cells, for elimination of viruses, or simply for keeping our healthy cells in good condition. As studying those effect can be exceedingly difficult on living cells, model lipid membranes, such as liposomes, can be used instead. Liposomal bilayer systems represent the most basic platform for studying those interactions, as they are simple, quite easy to prepare and relatively stable. They are especially useful for investigating the effects of bioactive compounds on the structure and kinetics of simple lipid membranes. In this review, we have described the most basic methods available for preparation of liposomes, as well as the essential techniques for studying the effects of bioactive compounds on those liposomes. Additionally, we have provided details for an easy laboratory implementation of some of the described methods, which should prove useful especially to those relatively new on this research field.


Assuntos
Bicamadas Lipídicas/química , Lipossomos/química , Polifenóis/química , Fluidez de Membrana , Análise Espectral/métodos
17.
Waste Manag ; 126: 476-486, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33838387

RESUMO

Onion production generates abundant waste with high contents of bioactive compounds. These might have several beneficial functional properties for fortification of foods. To understand the variety and potential for further use, we examined various parts of the plants (edible/inedible waste/outer skin of onion), as well as extraction in water/ethanol and by shaking/sonication. Quercetin content and antioxidant capacity were initially determined for extracts of edible and waste parts of red, yellow and white onions, and red shallots. Ethanol extracts of the waste fraction had the highest quercetin content and antioxidant capacity. Except white onion, which contained no quercetin, the dried waste ethanol extracts contained up to 15 mg quercetin g-1 and had an antioxidant capacity of nearly 40 mg Trolox equivalents g-1. Furthermore, the dried skin ethanol extract of yellow onion, which is commercially the most available fraction, contained 8 mg quercetin g-1, with antioxidant capacity of 25 mg Trolox equivalents g-1 and high antimicrobial activity. Dried yellow onion skin showed good stability for the quercetin content under various storage conditions (4, 25, 37, 40 °C; dark/light; dry/moist air/in water). Bacteria, bacterial spores, yeast and mould counts remained unchanged for dried onion skin over 5 days under storage conditions that can promote food spoilage, indicating exceptional microbial stability. Finally, two different applications are demonstrated for dried yellow onion skin: tablets for home use (tablets as more convenient form of storage and for simple dosing in cooking), and a stabilisation additive (prolonged shelf-life of olive oil). Both represent efficient and straightforward approaches through waste prevention and food fortification.


Assuntos
Anti-Infecciosos , Cebolas , Antioxidantes , Quercetina
18.
J Sci Food Agric ; 101(7): 2676-2686, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33068008

RESUMO

BACKGROUND: Anthocyanins were extracted from grape skins by a combination of ethanolic-ultrasonic assisted methods and were then encapsulated by freeze-drying in soy phosphatidylcholine vesicles with the addition of different polymers, such as pectin, acacia gum, and whey protein isolate. The goal of this research was to microencapsulate anthocyanin compounds extracted from grape skins, to characterize the stability and behavior of the vesicles and then to use them to obtain a new light formulated mayonnaise. RESULTS: The particle size ranged from 900 nm in the control condition to 250 nm in vesicles loaded with whey proteins. The powders showed higher encapsulation efficiency for all variants, ranging from 81 to 96%. Vibrational spectroscopy revealed better inclusion of anthocyanins in polysaccharide-based coacervates, whereas in protein-based coacervates a possible interaction of anthocyanins with amine groups was observed. The vesicles were tested for in vitro release, and the results confirmed the gradual release of the anthocyanins in both stages of digestion, with a residual content of about 50% in the vesicles. The powders displayed high stability during storage in the dark at 4 °C. The panelists appreciated the new light formulated mayonnaises enriched with 10% dried vesicles compared with the control sample, in particular samples with acacia gum. CONCLUSION: The study revealed that polymer-loaded vesicles presented stability in simulated gastrointestinal fluids and have proved successful in obtaining new light enriched mayonnaises. © 2020 Society of Chemical Industry.


Assuntos
Antocianinas/química , Composição de Medicamentos/métodos , Extratos Vegetais/química , Polímeros/química , Vitis/química , Composição de Medicamentos/instrumentação , Frutas/química , Tamanho da Partícula , Polímeros/síntese química , Pós/química
19.
Appl Microbiol Biotechnol ; 104(18): 7867-7878, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32734388

RESUMO

Pernisine is a subtilisin-like serine proteinase secreted by the hyperthermophilic archaeon Aeropyrum pernix. The significant properties of this proteinase are remarkable stability and ability to degrade the infectious prion proteins. Here we show the production of pernisine in the periplasm of Escherichia coli. This strategy prevented the aggregation of pernisine in the cytoplasm and increased the purity of the isolated pernisine. The thermostability of this recombinant pernisine was significantly increased compared with previous studies. In addition, several truncated pernisine variants were constructed and expressed in E. coli to identify the minimally active domain. The catalytic domain of pernisine consists of the αẞα structurally similar core flanked by the N-terminal and C-terminal outer regions. The deletion of the C-terminal α helix did not affect the pernisine activity at 90 °C. However, the complete deletion of the C-terminal outer region resulted in loss of proteolytic activity. The pernisine variant, in which the N-terminal outer region was deleted, had a reduced activity at 90 °C. These results underline the importance of the Ca2+ binding sites predicted in these outer regions for stability and activity of pernisine. KEY POINTS: • Aggregation of produced pernisine was prevented by translocation into periplasm. • Thermostability of mature pernisine was increased. • The outer regions of the catalytic core are required for pernisine thermostability.


Assuntos
Aeropyrum , Escherichia coli , Sítios de Ligação , Endopeptidases , Escherichia coli/genética , Periplasma
20.
Polymers (Basel) ; 12(9)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32824930

RESUMO

Two-layer functional coatings for polyethylene (PE) and polypropylene (PP) films were developed for the active packaging concept. Prior to coating, the polymer films were activated by O2 and NH3 plasma to increase their surface free energy and to improve the binding capacity and stability of the coatings. The first layer was prepared from a macromolecular chitosan solution, while the second (upper) layer contained chitosan particles with embedded catechin or pomegranate extract. Functionalized films were analyzed physico-chemically to elemental composition using ATR-FTIR spectroscopy and XPS. Further, oxygen permeability and wettability (Contact Angle) were examined. The antimicrobial properties were analyzed by the standard ISO 22196 method, while the antioxidative properties were determined with an ABTS assay. Functionalized films show excellent antioxidative and antimicrobial efficacy. A huge decrease in oxygen permeability was achieved in addition. Moreover, a desorption experiment was also performed, confirming that the migration profile of a compound from the surfaces was in accordance with the required overall migration limit. All these properties indicate the great potential of the developed active films/foils for end-uses in food packaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...