Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Neurol ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802624

RESUMO

In the last few years, our understanding of disease molecular mechanisms underpinning ALS has advanced greatly, allowing the first steps in translating into clinical practice novel research findings, including gene therapy approaches. Similarly, the recent advent of assistive technologies has greatly improved the possibility of a more personalized approach to supportive and symptomatic care, in the context of an increasingly complex multidisciplinary line of actions, which remains the cornerstone of ALS management. Against this rapidly growing background, here we provide an comprehensive update on the most recent studies that have contributed towards our understanding of ALS pathogenesis, the latest results from clinical trials as well as the future directions for improving the clinical management of ALS patients.

2.
Empir Softw Eng ; 29(2): 38, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38235121

RESUMO

As research in automatically detecting bugs grows and produces new techniques, having suitable collections of programs with known bugs becomes crucial to reliably and meaningfully compare the effectiveness of these techniques. Most of the existing approaches rely on benchmarks collecting manually curated real-world bugs, or synthetic bugs seeded into real-world programs. Using real-world programs entails that extending the existing benchmarks or creating new ones remains a complex time-consuming task. In this paper, we propose a complementary approach that automatically generates programs with seeded bugs. Our technique, called HyperPUT, builds C programs from a "seed" bug by incrementally applying program transformations (introducing programming constructs such as conditionals, loops, etc.) until a program of the desired size is generated. In our experimental evaluation, we demonstrate how HyperPUT can generate buggy programs that can challenge in different ways the capabilities of modern bug-finding tools, and some of whose characteristics are comparable to those of bugs in existing benchmarks. These results suggest that HyperPUT can be a useful tool to support further research in bug-finding techniques-in particular their empirical evaluation.

3.
J Neurol ; 271(3): 1342-1354, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37930481

RESUMO

BACKGROUND AND OBJECTIVES: Amyotrophic lateral sclerosis associated with mutations in SOD1 (SOD1-ALS) might be susceptible to specific treatment. The aim of the study is to outline the clinical features of SOD1-ALS patients by comparing them to patients without ALS major gene variants and patients with variants in other major ALS genes. Defining SOD1-ALS phenotype may assist clinicians in identifying patients who should be prioritized for genetic testing. METHODS: We performed an extensive literature research including original studies which reported the clinical features of SOD1-ALS and at least one of the following patient groups: C9ORF72 hexanucleotide repeat expansion (C9-ALS), TARDBP (TARDBP-ALS), FUS (FUS-ALS) or patients without a positive test for a major-ALS gene (N-ALS). A random effects meta-analytic model was applied to clinical data extracted encompassing sex, site and age of onset. To reconstruct individual patient survival data, the published Kaplan-Meier curves were digitized. Data were measured as odds ratio (OR) or standardized mean difference (SMD) as appropriate. Median survival was compared between groups. RESULTS: Twenty studies met the inclusion criteria. We identified 721 SOD1-ALS, 470 C9-ALS, 183 TARDBP-ALS, 113 FUS-ALS and 2824 N-ALS. SOD1-ALS showed a higher rate of spinal onset compared with N-ALS and C9-ALS (OR = 4.85, 95% CI = 3.04-7.76; OR = 10.47, 95% CI = 4.32-27.87) and an earlier onset compared with N-ALS (SMD = - 0.45, 95% CI = - 0.72 to - 0.18). SOD1-ALS had a similar survival compared with N-ALS (p = 0.14), a longer survival compared with C9-ALS (p < 0.01) and FUS-ALS (p = 0.019) and a shorter survival compared with TARDBP-ALS (p < 0.01). DISCUSSION: This study indicates the presence of a specific SOD1-ALS phenotype. Insights in SOD1-ALS clinical features are important in genetic counseling, disease prognosis and support patients' stratification in clinical trials.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Superóxido Dismutase-1/genética , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/genética , Fenótipo , Testes Genéticos , Mutação , Proteína C9orf72/genética , Proteína FUS de Ligação a RNA/genética
4.
Front Neurosci ; 17: 1204504, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37383099

RESUMO

Objectives: We report the clinical presentation and evolution of a case with a novel Progranulin gene (GRN) mutation and non-fluent language disturbances at onset. Materials and methods: A 60 year-old, white patient was followed due to a history of language disturbances. Eighteen months after onset, the patient underwent FDG positron emission tomography (PET), and at month 24 was hospitalized to perform neuropsychological evaluation, brain 3 T MRI, lumbar puncture for cerebrospinal fluid (CSF) analysis, and genotyping. At month 31, the patient repeated the neuropsychological evaluation and brain MRI. Results: At onset the patient complained prominent language production difficulties, such as effortful speech and anomia. At month 18, FDG-PET showed left fronto-temporal and striatal hypometabolism. At month 24, the neuropsychological evaluation reported prevalent speech and comprehension deficits. Brain MRI reported left fronto-opercular and striatal atrophy, and left frontal periventricular white matter hyperintensities (WMHs). Increased CSF total tau level was observed. Genotyping revealed a new GRN c.1018delC (p.H340TfsX21) mutation. The patient received a diagnosis of non-fluent variant of primary progressive aphasia (nfvPPA). At month 31, language deficits worsened, together with attention and executive functions. The patient presented also with behavioral disturbances, and a progressive atrophy in the left frontal-opercular and temporo-mesial region. Discussion and conclusion: The new GRN p.H340TfsX21 mutation resulted in a case of nfvPPA characterized by fronto-temporal and striatal alterations, typical frontal asymmetric WMHs, and a fast progression toward a widespread cognitive and behavioral impairment, which reflects a frontotemporal lobar degeneration. Our findings extend the current knowledge of the phenotypic heterogeneity among GRN mutation carriers.

6.
Neurology ; 101(8): 352-356, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-36927885

RESUMO

OBJECTIVES: Differentiation between primary (PLS) and amyotrophic lateral sclerosis (ALS) entails relevant consequences for prognosis and management but is mostly unreliable at early stages. The objectives of the study are (1) to determine the features at onset that could help to differentiate between PLS and ALS, (2) to evaluate the diagnostic performance of an integrated serum biomarker panel, and (3) to identify the prognostic factors for patients presenting with upper motor neuron (UMN) syndrome. METHODS: We selected and retrospectively analyzed the clinical data of patients presenting with UMN syndrome. At the first evaluation, when available, serum biomarkers were measured using ultrasensitive single molecule array. RESULTS: The study population included 55 patients with PLS and 50 patients with ALS. Patients with PLS presented a longer time to first neurologic evaluation (PLS: 35.0 months, interquartile range [IQR] 17.0-38.0 months; ALS: 12.5 months, IQR 7.0-21.3 months; p < 0.01) and lower levels of neurofilament light chain (NfL) (PLS: 81.8 pg/mL, IQR 38.4-111.1 pg/mL; ALS: 155.9 pg/mL, IQR 85.1-366.4 pg/mL; p = 0.01). Two patients with PLS and 3 patients with ALS carried the C9orf72 expansion. NfL resulted an independent predictor of final diagnosis (odds ratio 1.01, 95% CI 1.00-1.02; p = 0.04) and an independent prognostic factor (hazard ratio 1.01, 95% CI 1.00-1.01; p < 0.01). DISCUSSION: NfL might help to differentiate patients with PLS from patients with ALS and to predict prognosis in patients with UMN syndrome.


Assuntos
Esclerose Lateral Amiotrófica , Doença dos Neurônios Motores , Humanos , Esclerose Lateral Amiotrófica/diagnóstico , Estudos Retrospectivos , Neurônios Motores , Biomarcadores , Prognóstico , Doença dos Neurônios Motores/diagnóstico
7.
Front Oncol ; 12: 974751, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36226068

RESUMO

Although inflammation appears to play a role in neurolymphomatosis (NL), the mechanisms leading to degeneration in the peripheral nervous system are poorly understood. The purpose of this exploratory study was to identify molecular pathways underlying NL pathogenesis, combining clinical and neuropathological investigation with gene expression (GE) studies. We characterized the clinical and pathological features of eight patients with NL. We further analysed GE changes in sural nerve biopsies obtained from a subgroup of NL patients (n=3) and thirteen patients with inflammatory neuropathies as neuropathic controls. Based on the neuropathic symptoms and signs, NL patients were classified into three forms of neuropathy: chronic symmetrical sensorimotor polyneuropathy (SMPN, n=3), multiple mononeuropathy (MN, n=4) and acute motor-sensory axonal neuropathy (AMSAN, n=1). Predominantly diffuse malignant cells infiltration of epineurium was present in chronic SMPN, whereas endoneurial perivascular cells invasion was observed in MN. In contrast, diffuse endoneurium malignant cells localization occurred in AMSAN. We identified alterations in the expression of 1266 genes, with 115 up-regulated and 1151 down-regulated genes, which were mainly associated with ribosomal proteins (RP) and olfactory receptors (OR) signaling pathways, respectively. Among the top up-regulated genes were actin alpha 1 skeletal muscle (ACTA1) and desmin (DES). Similarly, in NL nerves ACTA1, DES and several RPs were highly expressed, associated with endothelial cells and pericytes abnormalities. Peripheral nerve involvement may be due to conversion towards a more aggressive phenotype, potentially explaining the poor prognosis. The candidate genes reported in this study may be a source of clinical biomarkers for NL.

8.
Front Neurol ; 13: 931006, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911889

RESUMO

Objective: Mutations in the TARDBP gene are a rare cause of genetic motor neuron disease (MND). Morphologic MRI characteristics of MND patients carrying this mutation have been poorly described. Our objective was to investigate distinctive clinical and MRI features of a relatively large sample of MND patients carrying TARDBP mutations. Methods: Eleven MND patients carrying a TARDBP mutation were enrolled. Eleven patients with sporadic MND (sMND) and no genetic mutations were also selected and individually matched by age, sex, clinical presentation and disease severity, along with 22 healthy controls. Patients underwent clinical and cognitive evaluations, as well as 3D T1-weighted and diffusion tensor (DT) MRI on a 3 Tesla scanner. Gray matter (GM) atrophy was first investigated at a whole-brain level using voxel-based morphometry (VBM). GM volumes and DT MRI metrics of the main white matter (WM) tracts were also obtained. Clinical, cognitive and MRI features were compared between groups. Results: MND with TARDBP mutations was associated with all possible clinical phenotypes, including isolated upper/lower motor neuron involvement, with no predilection for bulbar or limb involvement at presentation. Greater impairment at naming tasks was found in TARDBP mutation carriers compared with sMND. VBM analysis showed significant atrophy of the right lateral parietal cortex in TARDBP patients, compared with controls. A distinctive reduction of GM volumes was found in the left precuneus and right angular gyrus of TARDBP patients compared to controls. WM microstructural damage of the corticospinal tract (CST) and inferior longitudinal fasciculi (ILF) was found in both sMND and TARDBP patients, compared with controls, although decreased fractional anisotropy of the right CST and increased axial diffusivity of the left ILF (p = 0.017) was detected only in TARDBP mutation carriers. Conclusions: TARDBP patients showed a distinctive parietal pattern of cortical atrophy and greater damage of motor and extra-motor WM tracts compared with controls, which sMND patients matched for disease severity and clinical presentation were lacking. Our findings suggest that TDP-43 pathology due to TARDBP mutations may cause deeper morphologic alterations in both GM and WM.

9.
Front Neurosci ; 16: 833051, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495032

RESUMO

Introduction: In the last few years, different studies highlighted a significant enrichment of NEK1 loss of function (LoF) variants in amyotrophic lateral sclerosis (ALS), and an additional role for the p.Arg261His missense variant in the disease susceptibility. Several other missense variants have been described so far, whose pathogenic relevance remains however unclear since many of them have been reported in both patients and controls. This study aimed to investigate the presence of NEK1 variants and their correlation with phenotype in a cohort of Italian patients with ALS. Methods: We sequenced a cohort of 350 unrelated Italian patients with ALS by next-generation sequencing (NGS) and then we analyzed the clinical features of NEK1 carriers. Results: We detected 20 different NEK1 rare variants (four LoF and 16 missense) in 33 unrelated patients with sporadic ALS (sALS). The four LoF variants (two frameshift and two splice-site variants) were all novel. The p.Arg261His missense variant was enriched in the patients' cohort (p < 0.001). Excluding this variant from counting, the difference in the frequency of NEK1 rare missense variants between patients and controls was not statistically significant. NEK1 carriers had a higher frequency of flail arm (FA) phenotype compared with the other patients of the cohort (29.2% vs. 6.4%). Nine NEK1 carriers (37.5%) also harbored variants in other ALS-related genes. Conclusion: This study confirms that NEK1 LoF and p.Arg261. His missense variants are associated with ALS in an Italian ALS cohort and suggests a correlation between the presence of NEK1 variants and FA phenotype.

10.
Eur J Neurol ; 29(7): 1930-1939, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35263489

RESUMO

BACKGROUND AND PURPOSE: This study was undertaken to determine the diagnostic and prognostic value of a panel of serum biomarkers and to correlate their concentrations with several clinical parameters in a large cohort of patients with amyotrophic lateral sclerosis (ALS). METHODS: One hundred forty-three consecutive patients with ALS and a control cohort consisting of 70 patients with other neurodegenerative disorders (DEG), 70 patients with ALS mimic disorders (ALSmd), and 45 healthy controls (HC) were included. Serum neurofilament light chain (NfL), ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1), glial fibrillary acidic protein (GFAP), and total tau protein levels were measured using ultrasensitive single molecule array. RESULTS: NfL correlated with disease progression rate (p < 0.001) and with the measures of upper motor neuron burden (p < 0.001). NfL was higher in the ALS patients with classic and pyramidal phenotype. GFAP was raised in ALS with cognitive-behavioral impairment compared with ALS with normal cognition. NfL displayed the best diagnostic performance in discriminating ALS from HC (area under the curve [AUC] = 0.990), DEG (AUC = 0.946), and ALSmd (AUC = 0.850). UCHL1 performed well in distinguishing ALS from HC (AUC = 0.761), whereas it was not helpful in differentiating ALS from DEG and ALSmd. In multivariate analysis, NfL (p < 0.001) and UCHL1 (p = 0.038) were independent prognostic factors. Survival analysis combining NfL and UCHL1 effectively stratified patients with lower NfL levels (p < 0.001). CONCLUSIONS: NfL is a useful biomarker for the diagnosis of ALS and the strongest predictor of survival. UCHL1 is an independent prognostic factor helpful in stratifying survival in patients with low NfL levels, likely to have slowly progressive disease. GFAP reflects extramotor involvement, namely cognitive impairment or frontotemporal dementia.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Esclerose Lateral Amiotrófica/diagnóstico , Biomarcadores , Estudos de Coortes , Humanos , Proteínas de Neurofilamentos , Prognóstico
11.
Neural Regen Res ; 16(10): 1985-1991, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33642372

RESUMO

Motor neuron disease includes a heterogeneous group of relentless progressive neurological disorders defined and characterized by the degeneration of motor neurons. Amyotrophic lateral sclerosis is the most common and aggressive form of motor neuron disease with no effective treatment so far. Unfortunately, diagnostic and prognostic biomarkers are lacking in clinical practice. Neurofilaments are fundamental structural components of the axons and neurofilament light chain and phosphorylated neurofilament heavy chain can be measured in both cerebrospinal fluid and serum. Neurofilament light chain and phosphorylated neurofilament heavy chain levels are elevated in amyotrophic lateral sclerosis, reflecting the extensive damage of motor neurons and axons. Hence, neurofilaments are now increasingly recognized as the most promising candidate biomarker in amyotrophic lateral sclerosis. The potential usefulness of neurofilaments regards various aspects, including diagnosis, prognosis, patient stratification in clinical trials and evaluation of treatment response. In this review paper, we review the body of literature about neurofilaments measurement in amyotrophic lateral sclerosis. We also discuss the open issues concerning the use of neurofilaments clinical practice, as no overall guideline exists to date; finally, we address the most recent evidence and future perspectives.

13.
Int J Mol Sci ; 21(9)2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32397312

RESUMO

Although the genetic architecture of amyotrophic lateral sclerosis (ALS) is incompletely understood, recent findings suggest a complex model of inheritance in ALS, which is consistent with a multistep pathogenetic process. Therefore, the aim of our work is to further explore the architecture of ALS using targeted next generation sequencing (NGS) analysis, enriched in motor neuron diseases (MND)-associated genes which are also implicated in axonal hereditary motor neuropathy (HMN), in order to investigate if disease expression, including the progression rate, could be influenced by the combination of multiple rare gene variants. We analyzed 29 genes in an Italian cohort of 83 patients with both familial and sporadic ALS. Overall, we detected 43 rare variants in 17 different genes and found that 43.4% of the ALS patients harbored a variant in at least one of the investigated genes. Of note, 27.9% of the variants were identified in other MND- and HMN-associated genes. Moreover, multiple gene variants were identified in 17% of the patients. The burden of rare variants is associated with reduced survival and with the time to reach King stage 4, i.e., the time to reach the need for percutaneous endoscopic gastrostomy (PEG) positioning or non-invasive mechanical ventilation (NIMV) initiation, independently of known negative prognostic factors. Our data contribute to a better understanding of the molecular basis of ALS supporting the hypothesis that rare variant burden could play a role in the multistep model of disease and could exert a negative prognostic effect. Moreover, we further extend the genetic landscape of ALS to other MND-associated genes traditionally implicated in degenerative diseases of peripheral axons, such as HMN and CMT2.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/mortalidade , Doença dos Neurônios Motores/genética , Atrofia Muscular Espinal/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Itália , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Doença dos Neurônios Motores/mortalidade , Atrofia Muscular Espinal/mortalidade , Polimorfismo de Nucleotídeo Único , Prognóstico
14.
J Neurol ; 267(8): 2272-2280, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32306171

RESUMO

To investigate the prognostic role and the major determinants of serum phosphorylated neurofilament heavy -chain (pNfH) concentration across a large cohort of motor neuron disease (MND) phenotypes. Enzyme-linked immunosorbent assay (ELISA) was used to measure serum pNfH concentration in 219 MND patients consecutively enrolled in our tertiary MND clinic. A multifactorial analysis was carried out to investigate the major clinical determinants of serum pNfH. Kaplan-Meier survival curves and Cox regression analysis were performed to explore the prognostic value of serum pNfH. Serum pNfH levels were not homogenous among MND phenotypes; higher concentrations in pyramidal, bulbar, and classic phenotypes were observed. C9orf72-MND exhibited higher pNfH concentrations compared to non-C9orf72 MND. Multiple linear regression analysis revealed mean MEP/cMAP and disease progression rate as the two major predictors of serum pNfH levels (R2 = 0.188; p ≤ 0.001). Kaplan-Meier curves showed a significant difference of survival among MND subgroups when divided into quartiles based on pNfH concentrations, log-rank X2 = 53.0, p ≤ 0.0001. Our study evidenced that higher serum pNfH concentration is a negative independent prognostic factor for survival. In Cox multivariate model, pNfH concentration showed the highest hazard ratio compared to the other factors influencing survival included in the analysis. pNfH differs among the MND phenotypes and is an independent prognostic factor for survival. This study provides supporting evidence of the role of pNfH as useful prognostic biomarker for MND patients. Neurofilament measurements should be considered in the future prognostic models and in clinical trials for biomarker-based stratification, and to evaluate treatment response.


Assuntos
Esclerose Lateral Amiotrófica , Doença dos Neurônios Motores , Biomarcadores , Humanos , Filamentos Intermediários , Proteínas de Neurofilamentos , Fenótipo
15.
Artigo em Inglês | MEDLINE | ID: mdl-31007077

RESUMO

We describe a patient, previously known for NMOSD, who presented a rapidly progressive worsening of muscle strength, respiratory, and bulbar functions. ALS associated with cognitive impairment was diagnosed, while genetic analysis revealed a hexanucleotide repeat expansion in the C9orf72 gene. To the best of our knowledge, this is the first reported C9orf72-ALS patient with concurrent NMOSD. In consideration of the low prevalence of these two diseases, a by-chance co-occurrence is unlikely. Although the discovery of a disease-specific serum AQP4-IgG antibody has led to a broadening of the NMOSD, a progressive neurological deterioration, as shown by our patient, should be considered as a "red flag", leading to alternative diagnostic hypotheses. Our report supports the hypothesis that in C9orf72-ALS neuroinflammation may contribute to disease penetrance or to determine an aggressive clinical phenotype. Further investigations are needed in order to establish possible shared neuroinflammatory patterns between ALS, NMOSD, and other neuroinflammatory disorders.


Assuntos
Esclerose Lateral Amiotrófica/diagnóstico por imagem , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Expansão das Repetições de DNA/genética , Neuromielite Óptica/diagnóstico por imagem , Neuromielite Óptica/genética , Esclerose Lateral Amiotrófica/complicações , Humanos , Masculino , Pessoa de Meia-Idade , Neuromielite Óptica/complicações
16.
Neurobiol Aging ; 84: 239.e9-239.e14, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31000212

RESUMO

Variants in tank-binding kinase 1 (TBK1) are responsible for a significant proportion of amyotrophic lateral sclerosis (ALS) cases. In the present study, we analyzed variants in TBK1 extracted by targeted sequencing of 32 genes in a group of 406 Italian patients with ALS. We identified 7 different TBK1 variants in 7 sporadic cases, resulting in a frequency of 1.7%. Three patients had missense variants (p.R357Q, p.R358H, and p.R724C), one patient had a small deletion (p.E618del), and 3 had truncating variants (p.Y482*, p.R229*, and p.N681*). Notably, we found that 4 patients had an additional variant in ALS-related genes: 2 in OPTN and 2 in the 3'UTR region of FUS. By studying an independent group of 7 TBK1-mutated patients previously reported, we found another variant in the 3'UTR region of FUS in one patient. The presence of a second variant in TBK1 variant carriers is an interesting finding that needs to be investigated in larger cohorts of patients. These findings suggest that TBK1 belongs to the category of genes conferring a significantly increased risk but not sufficient to cause disease.


Assuntos
Esclerose Lateral Amiotrófica/genética , Variação Genética , Proteínas Serina-Treonina Quinases/genética
17.
J Neurol Neurosurg Psychiatry ; 88(10): 869-875, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28822984

RESUMO

BACKGROUND: TANK-binding kinase 1 (TBK1) gene has been recently identified as a causative gene of amyotrophic lateral sclerosis (ALS). METHODS: We sequenced the TBK1 gene in a cohort of 154 Italian patients with ALS with unclear genetic aetiology. We subsequently assessed the pathogenic potential of novel identified TBK1 variants using functional in vitro studies: expression, targeting and activity were evaluated in patient-derived fibroblasts and in cells transfected with mutated-TBK1 plasmids. RESULTS: We identified novel genomic TBK1 variants including two loss-of-function (LoF) (p.Leu59Phefs*16 and c.358+5G>A), two missense (p.Asp118Asn and p.Ile397Thr) and one intronic variant (c.1644-5_1644-2delAATA), in addition to two previously reported pathogenetic missense variants (p.Lys291Glu and p.Arg357Gln). Functional studies in patient-derived fibroblasts revealed that the c.358+5G>A causes aberrant pre-mRNA processing leading TBK1 haploinsufficiency. Biochemical studies in cellular models showed that the truncating variant p.Leu59Phefs*16 abolishes TBK1 protein expression, whereas the p.Asp118Asn variant severely impairs TBK1 phosphorylation activity. Conversely, the p.Ile397Thr variant displayed enhanced phosphorylation activity, whose biological relevance is not clear. CONCLUSION: The observed frequency of TBK1 LoF variants was 1.3% (2/154), increasing up to 3.2% (5/154) by taking into account also the functional missense variants that we were able to classify as potentially pathogenic, supporting the relevance of TBK1 in the Italian population with ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Mutação , Proteínas Serina-Treonina Quinases/genética , Adulto , Idoso , Estudos de Coortes , Feminino , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Linhagem
18.
Neuron ; 83(3): 663-78, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-25102561

RESUMO

The serotonin system is proposed to regulate physiology and behavior and to underlie mood disorders; nevertheless, the circuitry controlling serotonergic neurons remains uncharacterized. We therefore generated a comprehensive whole-brain atlas defining the monosynaptic inputs onto forebrain-projecting serotonergic neurons of dorsal versus median raphe based on a genetically restricted transsynaptic retrograde tracing strategy. We identified discrete inputs onto serotonergic neurons from forebrain and brainstem neurons, with specific inputs from hypothalamus, cortex, basal ganglia, and midbrain, displaying a greater than anticipated complexity and diversity in cell-type-specific connectivity. We identified and functionally confirmed monosynaptic glutamatergic inputs from prefrontal cortex and lateral habenula onto serotonergic neurons as well as a direct GABAergic input from striatal projection neurons. In summary, our findings emphasize the role of hyperdirect inputs to serotonergic neurons. Cell-type-specific classification of connectivity patterns will allow for further functional analysis of the diverse but specific inputs that control serotonergic neurons during behavior.


Assuntos
Núcleo Dorsal da Rafe/metabolismo , Neurônios Serotoninérgicos/citologia , Serotonina/metabolismo , Animais , Mapeamento Encefálico , Pareamento Cromossômico/fisiologia , Camundongos , Tecido Nervoso/metabolismo , Vias Neurais/metabolismo , Neurônios Serotoninérgicos/metabolismo
19.
PLoS One ; 9(1): e83879, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24454710

RESUMO

The underlying circuit imbalance in major depression remains unknown and current therapies remain inadequate for a large group of patients. Discovery of the rapid antidepressant effects of ketamine--an NMDA receptor (NMDAR) antagonist--has linked the glutamatergic system to depression. Interestingly, dysfunction in the inhibitory GABAergic system has also been proposed to underlie depression and deficits linked to GABAergic neurons have been found with human imaging and in post-mortem material from depressed patients. Parvalbumin-expressing (PV) GABAergic interneurons regulate local circuit function through perisomatic inhibition and their activity is NMDAR-dependent, providing a possible link between NMDAR and the inhibitory system in the antidepressant effect of ketamine. We have therefore investigated the role of the NMDAR-dependent activity of PV interneurons for the development of depression-like behavior as well as for the response to rapid antidepressant effects of NMDAR antagonists. We used mutant mice lacking NMDA neurotransmission specifically in PV neurons (PV-Cre+/NR1f/f) and analyzed depression-like behavior and anhedonia. To study the acute and sustained effects of a single NMDAR antagonist administration, we established a behavioral paradigm of repeated exposure to forced swimming test (FST). We did not observe altered behavioral responses in the repeated FST or in a sucrose preference test in mutant mice. In addition, the behavioral response to administration of NMDAR antagonists was not significantly altered in mutant PV-Cre+/NR1f/f mice. Our results show that NMDA-dependent neurotransmission in PV neurons is not necessary to regulate depression-like behaviors, and in addition that NMDARs on PV neurons are not a direct target for the NMDAR-induced antidepressant effects of ketamine and MK801.


Assuntos
Antidepressivos/farmacologia , Transtorno Depressivo Maior/metabolismo , Maleato de Dizocilpina/farmacologia , Interneurônios/metabolismo , Ketamina/farmacologia , Animais , Transtorno Depressivo Maior/tratamento farmacológico , Modelos Animais de Doenças , Preferências Alimentares/efeitos dos fármacos , Humanos , Interneurônios/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Parvalbuminas/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/deficiência , Receptores de N-Metil-D-Aspartato/genética , Natação
20.
Stem Cells ; 32(4): 874-85, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24170326

RESUMO

Duchenne muscular dystrophy (DMD) is an hereditary disease characterized by loss of muscle fibers and their progressive substitution by fat and fibrous tissue. Mesenchymal fibro-adipogenic progenitors (FAPs) expressing the platelet-derived growth factor receptor alpha (PDGFRα) are an important source of fibrosis and adipogenesis in dystrophic skeletal muscle. Among the therapies suggested for dystrophy are those based on nitric oxide (NO) donating drugs, the administration of which slows disease progression. NO has been shown to act by enhancing the regenerative potential of the diseased muscle. Whether it acts also by inhibiting fibrosis and adipogenesis was not known. Here, we show in vitro that NO regulates FAP fate through inhibition of their differentiation into adipocytes. In mdx mice, an animal model of DMD, treatment with the NO donating drug molsidomine reduced the number of PDGFRα(+) cells as well as the deposition of both skeletal muscle fat and connective tissues. Inhibition of adipogenesis was due to NO-induced increased expression of miR-27b leading to downregulation of peroxisome proliferator-activated receptors gamma (Pparγ1) expression in a pathway independent of cGMP generation. These findings reveal an additional effect of NO in dystrophic muscle that conceivably synergizes with its known effects on regeneration improvement and explain why NO-based therapies appear effective in the treatment of muscular dystrophy.


Assuntos
Adipócitos/metabolismo , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Óxido Nítrico/metabolismo , Adipócitos/patologia , Animais , GMP Cíclico , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Endogâmicos mdx , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , PPAR gama/genética , PPAR gama/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...