Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 2645, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976214

RESUMO

Since we still lack a theory of classical turbulence, attention has focused on the conceptually simpler turbulence in quantum fluids. Reaching a better understanding of the quantum case may provide additional insight into the classical counterpart. That said, we have hitherto lacked detectors capable of the real-time, non-invasive probing of the wide range of length scales involved in quantum turbulence. Here we demonstrate the real-time detection of quantum vortices by a nanoscale resonant beam in superfluid 4He at 10 mK. Essentially, we trap a single vortex along the length of a nanobeam and observe the transitions as a vortex is either trapped or released, detected through the shift in the beam resonant frequency. By exciting a tuning fork, we control the ambient vortex density and follow its influence on the vortex capture and release rates demonstrating that these devices are capable of probing turbulence on the micron scale.

2.
Sci Rep ; 8(1): 4911, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29559692

RESUMO

We report on the results of theoretical and experimental studies of photoluminescense of silicon nanocrystals in the proximity to plasmonic modes of different types. In the studied samples, the type of plasmonic mode is determined by the filling ratio of a one-dimensional array of gold stripes which covers the thin film with silicon nanocrystals on a quartz substrate. We analyze the extinction, photoluminesce spectra and decay kinetics of silicon nanocrystals and show that the incident and emitted light is coupled to the corresponding plasmonic mode. We demonstrate the modification of the extinction and photoluminesce spectra under the transition from wide to narrow gold stripes. The experimental extinction and photoluminescense spectra are in good agreement with theoretical calculations performed by the rigorous coupled wave analysis. We study the contribution of individual silicon nanocrystals to the overall photoluminescense intensity, depending on their spacial position inside the structure.

3.
Ultramicroscopy ; 179: 33-40, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28388480

RESUMO

We report on the new active tip for scanning probe microscopy allowing the simultaneous measurements of surface topography and its potential profile. We designed and fabricated a field-effect transistor with nanowire channel located on the apex of silicon-on-insulator small chip. The field-effect transistor with nanowire channel was selected due to its extremely high electric field sensitivity even at room temperature. We developed the scanning probe operated in the tuning fork regime and demonstrated its reasonable spatial and field resolution. The proposed device can be a unique tool for high-sensitive, high-resolution, non-destructive potential profile mapping of nanoscale objects in physics, biology and material science. We discuss the ways to optimize the sensor charge sensitivity to the theoretical limit which is 10-3e/Hz-1/2 at room temperature.

4.
Nanotechnology ; 28(22): 225304, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28422045

RESUMO

Here we present an original CMOS compatible fabrication method of a single-electron transistor structure with extremely small islands, formed by solitary phosphorus dopants in the silicon nanobridge. Its key feature is the controllable size reduction of the nanobridge in sequential cycles of low energy isotropic reactive ion etching that results in a decreased number of active charge centers (dopants) in the nanobridge from hundreds to a single one. Electron transport through the individual phosphorous dopants in the silicon lattice was studied. The final transistor structure demonstrates a Coulomb blockade voltage of ∼30 mV and nanobridge size estimated as [Formula: see text]. Analysis of current stability diagrams shows that electron transport in samples after the final etching stage had a single-electron nature and was carried through three phosphorus atoms. The fabrication method of the demonstrated structure allows it to be modified further by various impurities in additional etching and implantation cycles.

5.
Nanoscale ; 9(2): 613-620, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27942691

RESUMO

We report the single-electron tunneling behaviour of a silicon nanobridge where the effective island is a single As dopant atom. The device is a gated silicon nanobridge with a thickness and width of ∼20 nm, fabricated from a commercially available silicon-on-insulator wafer, which was first doped with As atoms and then patterned using a unique CMOS-compatible technique. Transport measurements reveal characteristic Coulomb diamonds whose size decreases with gate voltage. Such a dependence indicates that the island of the single-electron transistor created is an individual arsenic dopant atom embedded in the silicon lattice between the source and drain electrodes, and furthermore, can be explained by the increase of the localisation region of the electron wavefunction when the higher energy levels of the dopant As atom become occupied. The charge stability diagram of the device shows features which can be attributed to adjacent dopants, localised in the nanobridge, acting as charge traps. From the measured device transport, we have evaluated the tunnel barrier properties and obtained characteristic device capacitances. The fabrication, control and understanding of such "single-atom" devices marks a further step towards the implementation of single-atom electronics.

6.
Biomed Khim ; 60(5): 538-42, 2014.
Artigo em Russo | MEDLINE | ID: mdl-25386881

RESUMO

The potential of the method of scanning electron microscopy (SEM) to visualize the results of individual acts of DNA and oligonucleotides hybridization using gold nanoparticles as label was investigated. Molecule of biotin was introduced into DNA or oligonucleotide, and then it was detected in DNA duplex using a conjugate of streptavidin with gold nanoparticles. Effective imaging of DNA duplexes was possible using a conjugate prepared by covalent binding.. The detection limit of the model oligonucleotide of 19 bases was 20 pg.


Assuntos
DNA/química , Nanopartículas Metálicas/química , Microscopia Eletrônica de Varredura/métodos , Hibridização de Ácido Nucleico/métodos , Estreptavidina/química , Biotina/química , Ouro/química , Limite de Detecção , Oligonucleotídeos/química , Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...