Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Environ Geochem Health ; 46(8): 262, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926193

RESUMO

This study explores nitrate reduction in aqueous solutions using carboxymethyl cellulose loaded with zero-valent iron nanoparticles (Fe0-CMC). The structures of this nano-composite were characterized using various techniques. Based on the characterization results, the specific surface area of Fe0-CMC measured by the Brunauer-Emmett-Teller analysis were 39.6 m2/g. In addition, Scanning Electron Microscopy images displayed that spherical nano zero-valent iron particles (nZVI) with an average particle diameter of 80 nm are surrounded by carboxymethyl cellulose and no noticeable aggregates were detected. Batch experiments assessed Fe0-CMC's effectiveness in nitrate removal under diverse conditions including different adsorbent dosages (Cs, 2-10 mg/L), contact time (t, 10-1440 min), initial pH (pHi, 2-10), temperature (T, 10-55 °C), and initial concentration of nitrate (C0, 10-500 mg/L). Results indicated decreased removal with higher initial pHi and C0, while increased Cs and T enhanced removal. The study of nitrate removal mechanism by Fe0-CMC revealed that the redox reaction between immobilized nZVI on the CMC surface and nitrate ions was responsible for nitrate removal, and the main product of this reaction was ammonium, which was subsequently completely removed by the synthesized nanocomposite. In addition, a stable deviation quantum particle swarm optimization algorithm (SD-QPSO) and a least square error method were employed to train the ANFIS parameters. To demonstrate model performance, a quadratic polynomial function was proposed to display the performance of the SD-QPSO algorithm in which the constant parameters were optimized through the SD-QPSO algorithm. Sensitivity analysis was conducted on the proposed quadratic polynomial function by adding a constant deviation and removing each input using two different strategies. According to the sensitivity analysis, the predicted removal efficiency was most sensitive to changes in pHi, followed by Cs, T, C0, and t. The obtained results underscore the potential of the ANFIS model (R2 = 0.99803, RMSE = 0.9888), and polynomial function (R2 = 0.998256, RMSE = 1.7532) as accurate and efficient alternatives to time-consuming laboratory measurements for assessing nitrate removal efficiency. These models can offer rapid insights and predictions regarding the impact of various factors on the process, saving both time and resources.


Assuntos
Inteligência Artificial , Carboximetilcelulose Sódica , Ferro , Nanopartículas Metálicas , Nitratos , Poluentes Químicos da Água , Carboximetilcelulose Sódica/química , Nitratos/química , Ferro/química , Nanopartículas Metálicas/química , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Adsorção , Purificação da Água/métodos , Microscopia Eletrônica de Varredura , Oxirredução , Modelos Químicos
2.
J Environ Manage ; 361: 121249, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38820792

RESUMO

This study investigated the influence of biosolid applications on soil carbon storage and evaluated nutrient management strategies affecting soil carbon dynamics. The research assessed alterations in soil pH, soil carbon stock, and soil nitrogen content within short-term and long-term biosolids-amended soils in Bible Hill, Nova Scotia, Canada, extending to a depth of 0-60 cm. The findings indicated an increase in soil pH with alkaline treatment biosolids (ATB) applications across both study sites, with a legacy effect on soil pH noted in the long-term biosolids-amended soil following a single ATB application over 13 years. Both sites demonstrated significant increases in soil total carbon (STC) and soil organic carbon (SOC) within the 0-30 cm soil depth after biosolid application, and soil inorganic carbon (SIC) accounted for approximately 5-10% of STC, specifically in the surface soil layer (0-15 cm). In the long-term study site, annual 14, 28 and 42 Mg ATB ha-1 treatments resulted in a substantial rise in soil carbon stock (59.5, 60.1 and 68.0 Mg C ha-1), marking a 25% increase compared to control soil. The SOC content in biosolids-amended soil showed a declining trend with increasing soil depth at both study sites. Notably, the carbon stock in the short-term site was observed in composted biosolids (COMP) > ATB > liquid mesophilic anaerobically digested biosolids (LMAD) from the 0-60 cm soil depth. Approximately 79-80% of the variation in SOC response at both sites was concentrated within the top 30 cm soil. Soil total nitrogen (STN) showed no significant differences at the short-term site, and STN in biosolids-amended soil decreased with increasing soil depth at the long-term site. Biosolids-induced C retention coefficients (BCR) for ATB remained consistent at both sites, ranging from -13% to 31.4% with a mean of 11.12%. BCR values for COMP ranged from 1.9% to 34.4% with a mean of 18.73%, while those for LMAD exhibited variability, spanning from -6.2% to 106.3% with a mean of 53.9%.


Assuntos
Agricultura , Carbono , Solo , Solo/química , Carbono/análise , Nitrogênio/análise
3.
Environ Res ; 255: 119138, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750999

RESUMO

The application of organic amendments is one way to manage low water irrigation in paddy soils. In this 60-day greenhouse pot experiment involving paddy soil undergoing drying-rewetting cycles, we examined the effects of two organic amendments: azo-compost with a low carbon to phosphorus ratio (C:P) of 40 and rice straw with a high C:P ratio of 202. Both were applied at rates of 1.5% of soil weight (w/w). The investigation focused on changes in certain soil biochemical characteristics related to C and P in the rice rhizosphere, as well as rice plant characteristics. The irrigation regimes applied in this study included constant soil moisture in a waterlogged state (130% water holding capacity (WHC)), mild drying-rewetting (from 130 to 100% WHC), and severe drying-rewetting (from 130 to 70% WHC). The results indicated that the application of amendments was effective in severe drying-rewetting irrigation regimes on soil characteristics. Drying-rewetting decreased soil respiration rate (by 60%), microbial biomass carbon (by 70%), C:P ratio (by 12%), soil organic P (by 16%), shoot P concentration (by 7%), and rice shoot biomass (by 30%). However, organic amendments increased soil respiration rate (by 8 times), soil microbial biomass C (51%), total C (TC) (53%), dissolved organic carbon (3 times), soil available P (AP) (100%), soil organic P (63%), microbial biomass P (4.5 times), and shoot P concentration (21%). The highest significant correlation was observed between dissolved organic carbon and total C (r= 0.89**). Organic amendments also increased P uptake by the rice plant in the order: azo-compost > rice straw > control treatments, respectively, and eliminated the undesirable effect of mild drying-rewetting irrigation regime on rice plant biomass. Overall, using suitable organic amendments proves promising for enhancing soil properties and rice growth under drying-rewetting conditions, highlighting the interdependence of P and C biochemical changes in the rhizosphere during the rice vegetative stage.


Assuntos
Irrigação Agrícola , Oryza , Solo , Oryza/crescimento & desenvolvimento , Irrigação Agrícola/métodos , Solo/química , Carbono/análise , Fósforo/análise , Água , Biomassa , Microbiologia do Solo
4.
Chemosphere ; 355: 141749, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521099

RESUMO

Plastic pollution has become a major global concern, posing numerous challenges for the environment and wildlife. Most conventional ways of plastics degradation are inefficient and cause great damage to ecosystems. The development of biodegradable plastics offers a promising solution for waste management. These plastics are designed to break down under various conditions, opening up new possibilities to mitigate the negative impact of traditional plastics. Microbes, including bacteria and fungi, play a crucial role in the degradation of bioplastics by producing and secreting extracellular enzymes, such as cutinase, lipases, and proteases. However, these microbial enzymes are sensitive to extreme environmental conditions, such as temperature and acidity, affecting their functions and stability. To address these challenges, scientists have employed protein engineering and immobilization techniques to enhance enzyme stability and predict protein structures. Strategies such as improving enzyme and substrate interaction, increasing enzyme thermostability, reinforcing the bonding between the active site of the enzyme and substrate, and refining enzyme activity are being utilized to boost enzyme immobilization and functionality. Recently, bioengineering through gene cloning and expression in potential microorganisms, has revolutionized the biodegradation of bioplastics. This review aimed to discuss the most recent protein engineering strategies for modifying bioplastic-degrading enzymes in terms of stability and functionality, including enzyme thermostability enhancement, reinforcing the substrate binding to the enzyme active site, refining with other enzymes, and improvement of enzyme surface and substrate action. Additionally, discovered bioplastic-degrading exoenzymes by metagenomics techniques were emphasized.


Assuntos
Plásticos Biodegradáveis , Plásticos , Plásticos/química , Ecossistema , Biopolímeros , Biodegradação Ambiental , Bioengenharia
5.
Sci Total Environ ; 915: 169639, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38181952

RESUMO

Municipal biosolids are a nitrogen (N)-rich agricultural fertilizer which may emit nitrous oxide (N2O) after rainfall events. Due to sparse empirical data, there is a lack of biosolids-specific N2O emission factors to determine how land-applied biosolids contribute to the national greenhouse gas inventory. This study estimated N2O emissions from biosolids-amended land in Canada using Tier 1, Tier 2 (Canadian), and Tier 3 (Denitrification and Decomposition model [DNDC]) methodologies recommended by the Intergovernmental Panel on Climate Change (IPCC). Field data was from replicated plots at 8 site-years between 2017 and 2019 in the provinces of Quebec, Nova Scotia and Alberta, Canada, representing three distinct ecozones. Municipal biosolids were the major N source for the crop, applied as mesophilic anaerobically digested biosolids, composted biosolids, or alkaline-stabilized biosolids alone or combined with an equal amount of urea-N fertilizer to meet the crop N requirements. Fluxes of N2O were measured during the growing season with manual chambers and compared to N2O emissions estimated using the IPCC methods. In all site-years, the mean emission of N2O in the growing season was greater with digested biosolids than other biosolids sources or urea fertilizer alone. The emissions of N2O in the growing season were similar with composted or alkaline-stabilized biosolids, and no greater than the unfertilized control. The best estimates of N2O emissions, relative to measured values, were with the Tier 3 > adapted Tier 2 with biosolids-specific correction factors > standard Tier 2 = Tier 1 methods of the IPCC, according to the root mean square error statistic. The Tier 3 IPCC method was the best estimator of N2O emissions in the Canadian ecozones evaluated in this study. These results will be used to improve methods for estimating N2O emissions from agricultural soils amended with biosolids and to generate more accurate GHG inventories.


Assuntos
Óxido Nitroso , Solo , Óxido Nitroso/análise , Biossólidos , Fertilizantes , Agricultura , Nitrogênio/análise , Ureia , Alberta
6.
Waste Manag ; 176: 85-104, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266478

RESUMO

Application of biosolids to agricultural land has gained increasing attention due to their rich nutrient content. There are a variety of treatment processes for converting sewage sludge to biosolids. Different treatment processes can change the physicochemical properties of the raw sewage sludge and affect the dynamics of nutrient release in biosolids-amended soils. This paper reviews heat drying, alkaline treatment, and composting as biosolids treatment processes and discusses the effects of these treatments on biosolid nitrogen (N) content and availability. Most N in the biosolids remain in organic forms, regardless of biosolids treatment type but considerable variation exists in the mean values of total N and mineralizable N across different types of biosolids. The highest mean total N content was recorded in heat-dried biosolids (HDB) (4.92%), followed by composted biosolids (CB) (2.25%) and alkaline-treated biosolids (ATB) (2.14%). The mean mineralizable N value was similar between HDB and ATB, with a broader range of mineralizable N in ATB. The lowest N availability was observed in CB. Although many models have been extensively studied for predicting potential N mineralization in soils amended with organic amendments, limited research has attempted to model soil N mineralization following biosolids application. With biosolids being a popular, economical, and eco-friendly alternative to chemical N-fertilizers, understanding biosolids treatment effects on biosolids properties is important for developing a sound biosolids management system. Moreover, modeling N mineralization in biosolids-amended soils is essential for the adoption of sustainable farming practices that maximize the agronomic value of all types of biosolids.


Assuntos
Compostagem , Poluentes do Solo , Solo/química , Esgotos/química , Biossólidos , Nitrogênio/análise , Temperatura Alta , Poluentes do Solo/análise
7.
Sci Rep ; 13(1): 21989, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081886

RESUMO

Water consumption management and the application of advanced techniques in the agricultural sector can significantly contribute to the efficient utilization of limited water resources. This can be achieved by improving soil texture, increasing water retention, reducing erosion, and enhancing seedling germination through the use of superabsorbent polymers. This study aimed to investigate the effect of Aquasource superabsorbent (AS) on the morphological characteristics, phytochemical properties, antioxidant content, and water use efficiency of peppermint. It was conducted under different irrigation management and using different superabsorbent levels. Therefore, a 3 × 4 factorial design was used to determine the effects of irrigation intervals (2-, 4-, and 6-day) and different levels of AS amount (zero [control], 0.5, 1, and 2 wt%). The effects of these factors on various parameters (morphological characteristics, essential oil percentage, nutrient, protein, proline, carotenoid, antioxidant, and chlorophyll content, leaf area index, relative water content, and water use efficiency [WUE]) were evaluated. The results showed that morphological characteristics and essential oil percentage decreased significantly under drought stress (increasing the irrigation intervals). However, the addition of 0.5 (wt%) AS improved plant growth conditions. Increasing the amount of superabsorbent used to 1 and 2 (wt%) decreased the measured traits, which indicates the creation of unsuitable conditions for plant growth. AS application improved the growth of the root more than the leaf yield of peppermint. A 0.5 (wt%) addition of AS resulted in root length increases of 3, 13, and 15%, respectively, at irrigation intervals of 2, 4, and 6 days, respectively. Additionally, at 0.5 (wt%) AS, root weight increased by 8, 15, and 16% in 2-, 4-, and 6-day irrigation intervals, respectively. Also, the height of the plant increased by 3, 5, and 17% at 2-, 4-, and 6-day irrigation intervals when 0.5 (wt%) of AS was used compared to the control. As well, essential oil percentage increased by 2.14, 2.06, and 1.63% at 2-, 4-, and 6-day irrigation intervals. The nutrient and protein contents decreased as irrigation intervals and AS usage increased, indicating a similar trend. However, compared with the control, the addition of 0.5 (wt%) of AS resulted in some improvements in nutrients and protein. The highest WUE (3.075 kg m-3) was attained in the 4-day irrigation interval and 1 wt% AS addition. This was followed closely by the 2-day irrigation interval with 1 wt% AS addition at 3.025 kg m-3, and the 4-day irrigation interval with 0.5 wt% AS addition, which reached 2.941 kg m-3. Overall, the use of AS in appropriate amounts (0.5 wt%) can reduce water consumption and enhance essential oil yield and WUE in peppermint cultivation in water-scarce arid and semi-arid regions.


Assuntos
Mentha piperita , Óleos Voláteis , Antioxidantes/metabolismo , Água/metabolismo , Polímeros/farmacologia , Secas , Óleos Voláteis/farmacologia , Compostos Fitoquímicos/farmacologia , Irrigação Agrícola/métodos
8.
Ecotoxicol Environ Saf ; 268: 115676, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979355

RESUMO

Plastic pollution has emerged as a global challenge affecting ecosystem health and biodiversity conservation. Terrestrial environments exhibit significantly higher plastic concentrations compared to aquatic systems. Micro/nano plastics (MNPs) have the potential to disrupt soil biology, alter soil properties, and influence soil-borne pathogens and roundworms. However, limited research has explored the presence and impact of MNPs on aquaculture systems. MNPs have been found to inhibit plant and seedling growth and affect gene expression, leading to cytogenotoxicity through increased oxygen radical production. The article discusses the potential phytotoxicity process caused by large-scale microplastics, particularly those unable to penetrate cell pores. It also examines the available data, albeit limited, to assess the potential risks to human health through plant uptake.


Assuntos
Ecossistema , Plásticos , Humanos , Plásticos/toxicidade , Transporte Biológico , Plântula , Solo
9.
Ecotoxicol Environ Saf ; 263: 115228, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37423198

RESUMO

The main challenge of the twenty-first century is to find a balance between environmental sustainability and crop productivity in a world with a rapidly growing population. Soil health is the backbone of a resilient environment and stable food production systems. In recent years, the use of biochar to bind nutrients, sorption of pollutants, and increase crop productivity has gained popularity. This article reviews key recent studies on the environmental impacts of biochar and the benefits of its unique physicochemical features in paddy soils. This review provides critical information on the role of biochar properties on environmental pollutants, carbon and nitrogen cycling, plant growth regulation, and microbial activities. Biochar improves the soil properties of paddy soils through increasing microbial activities and nutrient availability, accelerating carbon and nitrogen cycle, and reducing the availability of heavy metals and micropollutants. For example, a study showed that the application of a maximum of 40 t ha-1 of biochar from rice husks prior to cultivation (at high temperature and slow pyrolysis) increases nutrient utilization and rice grain yield by 40%. Biochar can be used to minimize the use of chemical fertilizers to ensure sustainable food production.


Assuntos
Poluentes Ambientais , Oryza , Solo/química , Agricultura , Carvão Vegetal , Carbono , Fertilizantes
10.
Environ Pollut ; 331(Pt 1): 121939, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37263567

RESUMO

Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used globally to treat and prevent illness. Biosolids change physico-chemical characteristics of soil and can affect the mobility of NSAIDs. A field-based lysimeter study evaluated the effect of three rates (0, 7, and 28 Mg ha-1) of alkaline treated biosolids (ATB) on the leaching potential of naproxen (NPX), ibuprofen (IBF), and ketoprofen (KTF) over 34 days in a sandy loam textured soil. Although all three NSAIDs in the lysimeter cells vertically migrated to deeper soil depths after spiking, the sum of all NPX, IBF, and KTF detected in the leachate samples from all treatments were only 0.03%, 0.02%, and 0.04% of the initial spiking mass to the surface soil, respectively. A mass balance analysis indicated a low accumulation of these compounds in the soil at the end of the study (Day 34) from all treatments with only 4.8%, 0.5%, and 0.7% of initial spiked NPX, IBF, and KTF, respectively. Application of ATB significantly increased soil pH and organic matter (OM) content of the soils but did not impact retention of the compounds in the soil profile. Overall, all three NSAIDs in the present study presented low mobility in the loamy sand textured agricultural soil.


Assuntos
Cetoprofeno , Poluentes do Solo , Biossólidos , Anti-Inflamatórios não Esteroides/análise , Naproxeno/análise , Ibuprofeno , Solo/química , Areia , Poluentes do Solo/análise
11.
Sci Rep ; 13(1): 8896, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264097

RESUMO

Salinity and drought are two major abiotic stresses challenging global crop production and food security. In this study, the effects of individual and combined effects of drought (at different phenological stages) and salt stresses on growth, morphology, and physiology of triticale were evaluated. For this purpose, a 3 x 4 factorial design in three blocks experiment was conducted. The stress treatments included three levels of salinity (0, 50, and 100 mM NaCl) and four levels of drought (regular irrigation as well as irrigation disruption at heading, flowering, and kernel extension stages). The stresses, individual as well as combined, caused a significant decrease in chlorophyll contents, total dry matter, leaf area index, relative water content, and grain yield of triticale. In this regard, the highest reduction was recorded under combined stresses of 100 mM NaCl and drought stress at flowering. However, an increase in soluble sugars, leaf free proline, carotenoid contents, and electrolyte leakage was noted under stress conditions compared to the control. In this regard, the highest increase in leaf free proline, soluble sugars, and carotenoid contents were noted under the combination of severe salinity and drought stress imposed at the flowering stage. Investigating the growth indices in severe salinity and water deficit stress in different phenological stages shows the predominance of ionic stress over osmotic stress under severe salinity. The highest grain yield was observed under non-saline well-watered conditions whereas the lowest grain yield was recorded under severe salinity and drought stress imposed at the flowering stage. In conclusion, the flowering stage was more sensitive than the heading and kernel extension stages in terms of water deficit. The impact of salinity and water deficit was more pronounced on soluble sugars and leaf free proline; so, these criteria can be used as physiological indicators for drought and salinity tolerance in triticale.


Assuntos
Cloreto de Sódio , Triticale , Cloreto de Sódio/farmacologia , Secas , Estresse Salino , Carotenoides , Desidratação , Água , Prolina , Açúcares
12.
Sci Total Environ ; 866: 161381, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36621509

RESUMO

Pyrolytic biochar (PL-BC, pyrochar) and hydrothermal biochar (HT-BC, hydrochar) derived from branches and leaves of tea plants had different pH, electrical conductivity (EC), total carbon nitrogen content, BET surface area, total pore volume, average pore diameter, and functional groups. HT-BC had a larger specific surface area and more functional groups than PL-BC. Ralstonia Bcul-1 (R-B) was the dominant and functional bacteria in a fertilized vegetable soil supplemented with TBB-immobilized R-B (TBB + R-B). R-B vitality was more closely related to BET surface area, total pore volume, and functional groups of tea-based biochar (TBB: PL-BC and HT-BC). R-B was able to maintain high oxidase activity. R-B and TBB + R-B can increase the activities of urease and peroxidase in vegetable soil playing an essential role in the biotransformation of ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N). TBB was able to simultaneously increase the content of NO3--N and NH4+-N, and TBB + R-B also significantly increased NO3--N content but decreased NH4+-N content in a fertilized vegetable soil. These results indicated that R-B promoted nitrification in the soil, i.e. conversion of NH4+-N into NO3--N, by enhancing the activities of urease and peroxidase. R-B had high adsorption capacity for cadmium (Cd) and chromium (Cr) (Cd&Cr: Cd and Cr). Moreover, TBB + R-B was able to convert weak acid extractable and reducible Cd&Cr into a more stable residual fraction and oxidizable Cd&Cr. The overall effect of the treatments was to reduce plant uptake of Cd&Cr by cabbage. TBB + R-B significantly promoted R-B growth, changed inorganic nitrogen speciation, increased NO3--N supply, reduced Cd&Cr bioavailability, and decreased plant tissue Cd&Cr content.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Solo/química , Nitratos , Cromo/análise , Verduras/metabolismo , Disponibilidade Biológica , Nitrogênio/metabolismo , Urease , Carvão Vegetal/química , Peroxidases/metabolismo , Chá , Poluentes do Solo/análise
13.
Environ Res ; 217: 114844, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36403653

RESUMO

Poly- and perfluoroalkyl substances (PFAS) are a class of emerging organic contaminants that are impervious to standard physicochemical treatments. The widespread use of PFAS poses serious environmental issues. PFAS pollution of soils and water has become a significant issue due to the harmful effects of these chemicals both on the environment and public health. Owing to their complex chemical structures and interaction with soil and water, PFAS are difficult to remove from the environment. Traditional soil remediation procedures have not been successful in reducing or removing them from the environment. Therefore, this review focuses on new phytoremediation techniques for PFAS contamination of soils and water. The bioaccumulation and dispersion of PFAS inside plant compartments has shown great potential for phytoremediation, which is a promising and unique technology that is realistic, cost-effective, and may be employed as a wide scale in situ remediation strategy.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Biodegradação Ambiental , Fluorocarbonos/análise , Água , Bioacumulação , Solo/química , Poluentes Químicos da Água/análise
14.
Sci Total Environ ; 823: 153695, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35143794

RESUMO

Municipal wastewater sludge may be processed into biosolids and applied to farmland for crop production, rather than be disposed of in landfills. Biosolids supply plant nutrients and increase soil organic carbon but also contribute to the production of greenhouse gases (GHGs). Computational models must therefore be refined to estimate the contribution of these gases to national GHG inventories. The DeNitrification and DeComposition (DNDC) model was evaluated for processes regulating crop growth, GHGs and soil C&N dynamics to determine its suitability for informing policy decision-making and advancing Canada's GHG inventory. Three years (2017-2019) of data were collected from replicated corn (Zea mays L.) plots in Quebec, Canada. The plots received 120 kg of available N ha-1 y-1 in mesophilic anaerobically digested biosolids, composted biosolids, alkaline-stabilized biosolids, urea, or combinations of these, while control plots were left unfertilized. Treatments receiving digested biosolids emitted more nitrous oxide (N2O) during the growing season than other treatments, while carbon dioxide (CO2) emissions were similar between treatments. After calibration, DNDC estimates were within the 95% confidence interval of the measured variables. Correlation coefficients (r) indicated discrepancies in trends between the estimated and measured values for daily CO2 and N2O emissions. These emissions were underestimated in the early and mid-growing season of 2018. They were more variable from plots fertilized with composted or alkaline-stabilized biosolids than from those with digested biosolids. Annual N2O emissions (r = 0.8), crop yields (r = 0.5), and soil organic carbon (r = 0.4) were modelled with higher accuracy than cumulative CO2 emissions (r = 0.3) and total soil N (r = 0.1). These findings suggest that DNDC is suitable for estimating field-scale N2O emissions following biosolids application, but estimates of CO2 emissions could be improved, perhaps by disaggregating the biosolids from the soil organic matter pools in the decomposition subroutines.


Assuntos
Gases de Efeito Estufa , Agricultura , Biossólidos , Carbono , Dióxido de Carbono/análise , Desnitrificação , Fazendas , Fertilizantes/análise , Metano/análise , Óxido Nitroso/análise , Solo
15.
J Hazard Mater ; 416: 125942, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492869

RESUMO

A novel Ralstonia Bcul-1 strain was isolated from soil samples that was closest to Ralstonia pickettii. Broad-spectrum resistance was identified to a group of heavy metal ions and tolerance to concentrations of Cd2+ up to 400 mg L-1. Low concentrations of heavy metal ions did not have distinctive impact on heavy metal resistance genes and appeared to induce greater expression. Under exposure to Cd2+, cell wall components were significantly enhanced, and some proteins were also simultaneously expressed allowing the bacteria to adapt to the high Cd2+ living environment. The maximum removal rate of Cd2+ by the Ralstonia Bcul-1 strain was 78.97% in the culture medium supplemented with 100 mg L-1 Cd2+. Ralstonia Bcul-1 was able to survive and grow in a low nutrient and cadmium contaminated (0.42 mg kg-1) vegetable soil, and the cadmium removal rate was up to 65.76% in 9th growth. Ralstonia Bcul-1 mixed with biochar could maintain sustainable growth of this strain in the soil up to 75 d and the adsorption efficiency of cadmium increased by 16.23-40.80% as compared to biochar application alone. Results from this work suggests that Ralstonia Bcul-1 is an ideal candidate for bioremediation of nutrient deficient heavy metal contaminated soil.


Assuntos
Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Cádmio/toxicidade , Metais Pesados/toxicidade , Ralstonia , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
16.
Sci Total Environ ; 751: 141687, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32889459

RESUMO

Agricultural soils are inherently disturbed systems where organic matter additions are considered to enhance microbial community structure and resilience. High-throughput sequencing of community was applied to soils receiving annual applications of an alkaline stabilized biosolid (ATB), at four increasing rates over 10 years, as an environmental stressor in contrast to a one-time application of ATB ten years prior. Bacterial community structure was more greatly influenced by annual ATB applications relative to fungi and eukaryotes. Specifically, higher relative abundances of Proteobacteria, Acidobacteria, Bacteroidetes, and Chloroflexi were measured in annual ATB rates relative to the single ATB rates and the control. High rates of annual ATB applications resulted in lower bacterial alpha-diversity, as well as fungal and eukaryotic Shannon diversity, but single ATB or lower rates of ATB applied annually showed increased alpha -diversity relative to the control. Soil microbiome responses to annual ATB and single ATB rates were also examined using co-occurrence network analysis. High rates and frequency of ATB application resulted in a decrease in network interactions, lower average number of neighbors, and reduced network density compared to control soils. A concomitant increase in network diameter and characteristic path length further suggests annual additions of ATB led to a more adapted, but less cooperative, state in the microbiome. The data suggest a more universal functional response of microbiomes to the stressors compared to community structure and local diversity. In particular, beta-analysis and network analysis were both able to resolve significant effects on soil microbiomes 10 years post-application of low rates of ATB. Community complexity and stability were increased by single low rate of ATB additions and decreased by single high rate and annual moderate rates of ATB additions. These results provide insights into the effects that ATB additions have on soil community after only one-time use and after annual additions over a decade.


Assuntos
Microbiota , Solo , Biossólidos , Consórcios Microbianos , Microbiologia do Solo
17.
Sci Total Environ ; 755(Pt 1): 142520, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33032129

RESUMO

Land application of biosolids is one potential source of pharmaceuticals and personal care products (PPCPs) into agricultural soils. Degradation is an important natural attenuation pathway that affects the fate and transport of PPCPs in the soil system and biosolids application could alter the process. The present study assessed the effect of individual and mixture compound environments on the biodegradation rate and half-life of three non-steroidal anti-inflammatory drugs (NSAIDs), naproxen (NPX), ibuprofen (IBF), and ketoprofen (KTF), in a loamy sand textured agricultural soil receiving an alkaline treated biosolid (ATB) amendment. A prolonged half-life of the target NSAIDs was determined for sterile soils and shorter half-lives in unsterile soils, indicating the loss of target compounds in all treatments was mainly attributed to biodegradation and followed first-order kinetics. IBF and NPX showed low to moderate persistence in soil and ATB amended soil, with half-lives ranging from 4.9 to 14.8 days, while KTF appeared to be highly persistent with an average half-life of 33 days. The order in which the target NSAIDs disappeared in both soil and ATB amended soil was: IBF > NPX > KTF, for both individual and mixture compound treatments. Soils that received the ATB amendment demonstrated inhibited degradation of NPX in all treatments, as well as IBF and KTF in individual compound treatment over the 14-day incubation study. We also observed an inhibition effect from the ATB amendment in sterile soil treatments. In mixture compound treatments, IBF degradation was inhibited in both soil and ATB amended soil. The degradation rate of KTF in mixture compound environment in soil was lower, while the opposite effects were observed in ATB amended soils. For NPX, the degradation was enhanced in mixture compound environment in ATB amended soil, while the same degradation rate of NPX was calculated in soil.


Assuntos
Preparações Farmacêuticas , Poluentes do Solo , Anti-Inflamatórios não Esteroides , Biossólidos , Cinética , Solo , Poluentes do Solo/análise
18.
Environ Pollut ; 264: 114785, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32559880

RESUMO

Biochar produced from water hyacinths (Eichhornia crassipes) has been demonstrated to be an effective adsorbent for the removal of certain heavy metals and as a means of control for this highly invasive species. This study involved examined the Cd2+ sorption dynamics of an alginate encapsulated water hyacinth biochar (BAC) generated at different temperatures and modified using ferric/ferrous sulfate (MBAC). The maximum Cd2+ sorption occurred at a pH of 6 and at a solution temperature of 37 °C. Sorption equilibria for the biochar-alginate capsule (BAC) and modified biochar-alginate capsule (MBAC) treatments fit both the Langmuir (R2 = 0.876 to 0.99) and Freundlich (R2 = 0.849 to 0.971) equations. Langmuir isotherms had a better fit than the Freundlich isotherms, with maximum sorption capacities ranging from 24.2 to 45.8 mg Cd2+ g-1. Larger KL values in Freundlich modeling suggest strong bonding of the BAC and MBAC sorbents to Cd2+, with values of KL in the MBAC treatments ranging between 31 and 178% greater than the BAC treatments. Cd2+ sorption followed pseudo first-order kinetics (R2 = 0.926 to 0.991) with greater efficiency of removal using treatments with biochar generated at temperatures >500 °C. Results from this study highlight the potential for biochar-alginate capsules derived from water hyacinth to be effective for the removal of Cd2+ from wastewaters.


Assuntos
Eichhornia , Poluentes Químicos da Água/análise , Adsorção , Alginatos , Cádmio/análise , Carvão Vegetal , Cinética , Soluções
19.
J Environ Qual ; 46(4): 889-896, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28783786

RESUMO

There have been limited studies of how pyrolysis temperature and activation processes alter the chemical properties of biochar and how these changes influence ammonium (NH), nitrate (NO), and phosphate (PO) sorption. This study compared the chemical properties of biochars and activated biochars (ActBC with steam and CO activation) produced by slow pyrolysis at 200 (BC200), 400 (BC400), 600 (BC600), 800 (ActBC200, ActBC400, ActBC600), and 850°C (sulfachar-S enriched biochar with steam activation). Quantitative solid-state C nuclear magnetic resonance spectroscopy and elemental analysis were used to study temperature and activation on biochar chemical properties. The sorption capacity of biochars for NH, NO, and PO were measured by batch sorption experiments. Nuclear magnetic resonance spectroscopy data showed that BC200 contained mainly aliphatic C compounds (86% of O-alkyl) belonging to cellulose and hemicellulose, whereas BC400 and BC600 composition was dominated by fused aromatic C structures, containing 81 and 97% aromatic C, respectively. Increasing pyrolysis temperatures decreased biochar total C but increased its cation exchange capacity, pH, and contents of total N and P, calcium, potassium, and magnesium. The BC200 released NO and PO, whereas sulfachar and ActBC200 sorbed significantly higher amounts NO and PO than BC600 by 83 and 96%, respectively, across aqueous solutions. Sulfachar and BC400 sorbed significantly greater amounts NH than did the other biochars. This study shows that production temperature significantly affects biochar chemical properties and that activation increases NO and PO sorption. These results suggest that activated biochar could be useful for sorbing soil N and P, thereby reducing leaching losses.


Assuntos
Carvão Vegetal , Nitrogênio/química , Fósforo/química , Poluição da Água/prevenção & controle , Adsorção , Compostos de Amônio , Fosfatos , Temperatura
20.
Chemosphere ; 174: 628-637, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28199939

RESUMO

Non-steroidal, anti-inflammatory drugs (NSAIDs) are widely used pharmaceutical products with analgesic and anti-inflammatory effects that are consistently detected in municipal wastewater systems and in municipal biosolids. Land application of biosolids and irrigation with reclaimed wastewater introduces these compounds into agricultural environments, which is an emerging issue of concern for ecosystem health. In this study, the sorption-desorption behaviour of four commonly consumed NSAIDs, including naproxen (NPX), ibuprofen (IBU), ketoprofen (KTF), and diclofenac (DCF), was examined in a loam textured soil exposed to either an individual-compound or a mixture of the four NSAIDs. The proportion of NSAIDs adsorbed to the soil in the mixture-compound system was 72%, 55%, 50% and 45%, for diclofenac, naproxen, ketoprofen, and ibuprofen, respectively, and differed slightly from the individual compound adsorption. Diclofenac displayed strong sorption and low desorption in both the individual-compound and mixture-compound systems. Naproxen and ibuprofen exhibited significant differences between the adsorption isotherms of the individual-compound and mixture-compound systems. Results of this study highlight differences in the sorption behaviour of NSAIDs, when present as mixtures, possibly through multilayer bonding effects or complexation with cationic metals or organo-clays from the soil. Soil organic matter (SOM) may have played a role in determining some of the interactions between the compounds but other factors associated with the mixture-compound system, such as cation bridging or multilayer cooperative adsorption. Desorption data suggests that the mechanisms involved in binding NSAIDs to the soil surface are also influence by the presence of other compounds in a mixture. A reduction in desorption was observed for all four NSAIDs in the mixture-compound system relative to the individual-compound system, but were greatest for naproxen and ibuprofen. The sorption-desorption hysteresis increased for naproxen and ibuprofen in the mixture-compound system. This study suggests that cooperative adsorption plays a role in the interaction of NSAIDs when present as mixtures rather than as individual compounds.


Assuntos
Anti-Inflamatórios não Esteroides/química , Diclofenaco/química , Ibuprofeno/química , Cetoprofeno/química , Naproxeno/química , Poluentes do Solo/química , Adsorção , Agricultura , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...