Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Med Inform Decis Mak ; 24(1): 122, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741115

RESUMO

MOTIVATION: Drug repurposing speeds up the development of new treatments, being less costly, risky, and time consuming than de novo drug discovery. There are numerous biological elements that contribute to the development of diseases and, as a result, to the repurposing of drugs. METHODS: In this article, we analysed the potential role of protein sequences in drug repurposing scenarios. For this purpose, we embedded the protein sequences by performing four state of the art methods and validated their capacity to encapsulate essential biological information through visualization. Then, we compared the differences in sequence distance between protein-drug target pairs of drug repurposing and non - drug repurposing data. Thus, we were able to uncover patterns that define protein sequences in repurposing cases. RESULTS: We found statistically significant sequence distance differences between protein pairs in the repurposing data and the rest of protein pairs in non-repurposing data. In this manner, we verified the potential of using numerical representations of sequences to generate repurposing hypotheses in the future.


Assuntos
Reposicionamento de Medicamentos , Humanos , Análise de Sequência de Proteína
2.
BMC Genomics ; 25(1): 43, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38191292

RESUMO

BACKGROUND: Drug repurposing plays a significant role in providing effective treatments for certain diseases faster and more cost-effectively. Successful repurposing cases are mostly supported by a classical paradigm that stems from de novo drug development. This paradigm is based on the "one-drug-one-target-one-disease" idea. It consists of designing drugs specifically for a single disease and its drug's gene target. In this article, we investigated the use of biological pathways as potential elements to achieve effective drug repurposing. METHODS: Considering a total of 4214 successful cases of drug repurposing, we identified cases in which biological pathways serve as the underlying basis for successful repurposing, referred to as DREBIOP. Once the repurposing cases based on pathways were identified, we studied their inherent patterns by considering the different biological elements associated with this dataset, as well as the pathways involved in these cases. Furthermore, we obtained gene-disease association values to demonstrate the diminished significance of the drug's gene target in these repurposing cases. To achieve this, we compared the values obtained for the DREBIOP set with the overall association values found in DISNET, as well as with the drug's target gene (DREGE) based repurposing cases using the Mann-Whitney U Test. RESULTS: A collection of drug repurposing cases, known as DREBIOP, was identified as a result. DREBIOP cases exhibit distinct characteristics compared with DREGE cases. Notably, DREBIOP cases are associated with a higher number of biological pathways, with Vitamin D Metabolism and ACE inhibitors being the most prominent pathways. Additionally, it was observed that the association values of GDAs in DREBIOP cases were significantly lower than those in DREGE cases (p-value < 0.05). CONCLUSIONS: Biological pathways assume a pivotal role in drug repurposing cases. This investigation successfully revealed patterns that distinguish drug repurposing instances associated with biological pathways. These identified patterns can be applied to any known repurposing case, enabling the detection of pathway-based repurposing scenarios or the classical paradigm.


Assuntos
Reposicionamento de Medicamentos , Metabolismo dos Lipídeos , Sistemas de Liberação de Medicamentos , Estatísticas não Paramétricas
3.
Artif Intell Med ; 145: 102687, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37925215

RESUMO

Drug repurposing has gained the attention of many in the recent years. The practice of repurposing existing drugs for new therapeutic uses helps to simplify the drug discovery process, which in turn reduces the costs and risks that are associated with de novo development. Representing biomedical data in the form of a graph is a simple and effective method to depict the underlying structure of the information. Using deep neural networks in combination with this data represents a promising approach to address drug repurposing. This paper presents BEHOR a more comprehensive version of the REDIRECTION model, which was previously presented. Both versions utilize the DISNET biomedical graph as the primary source of information, providing the model with extensive and intricate data to tackle the drug repurposing challenge. This new version's results for the reported metrics in the RepoDB test are 0.9604 for AUROC and 0.9518 for AUPRC. Additionally, a discussion is provided regarding some of the novel predictions to demonstrate the reliability of the model. The authors believe that BEHOR holds promise for generating drug repurposing hypotheses and could greatly benefit the field.


Assuntos
Reposicionamento de Medicamentos , Redes Neurais de Computação , Reprodutibilidade dos Testes
4.
Healthcare (Basel) ; 10(9)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36141396

RESUMO

Rare diseases are a group of uncommon diseases in the world population. To date, about 7000 rare diseases have been documented. However, most of them do not have a known treatment. As a result of the relatively low demand for their treatments caused by their scarce prevalence, the pharmaceutical industry has not sufficiently encouraged the research to develop drugs to treat them. This work aims to analyse potential drug-repositioning strategies for this kind of disease. Drug repositioning seeks to find new uses for existing drugs. In this context, it seeks to discover if rare diseases could be treated with medicines previously indicated to heal other diseases. Our approaches tackle the problem by employing computational methods that calculate similarities between rare and non-rare diseases, considering biological features such as genes, proteins, and symptoms. Drug candidates for repositioning will be checked against clinical trials found in the scientific literature. In this study, 13 different rare diseases have been selected for which potential drugs could be repositioned. By verifying these drugs in the scientific literature, successful cases were found for 75% of the rare diseases studied. The genetic associations and phenotypical features of the rare diseases were examined. In addition, the verified drugs were classified according to the anatomical therapeutic chemical (ATC) code to highlight the types with a higher predisposition to be repositioned. These promising results open the door for further research in this field of study.

5.
Drug Discov Today ; 27(2): 558-566, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34666181

RESUMO

In the COVID-19 pandemic, drug repositioning has presented itself as an alternative to the time-consuming process of generating new drugs. This review describes a drug repurposing process that is based on a new data-driven approach: we put forward five information paths that associate COVID-19-related genes and COVID-19 symptoms with drugs that directly target these gene products, that target the symptoms or that treat diseases that are symptomatically or genetically similar to COVID-19. The intersection of the five information paths results in a list of 13 drugs that we suggest as potential candidates against COVID-19. In addition, we have found information in published studies and in clinical trials that support the therapeutic potential of the drugs in our final list.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Coleta de Dados/métodos , Reposicionamento de Medicamentos/métodos , Animais , Humanos
6.
Hum Vaccin Immunother ; 18(1): 1-16, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-33662222

RESUMO

Social media, and in particularly Twitter, can be a resource of enormous value to retrieve information about the opinion of general populaton to vaccines. The increasing popularity of this social media has allowed to use its content to have a clear picture of their users on this topic. In this paper, we perform a study about vaccine-related messages published in Spanish during 2015-2018. More specifically, the paper has focused on two specific diseases: influenza and measles (and MMR as its vaccine). By also including an analysis about the sentiment expressed on the published tweets, we have been able to identify the type of messages that are published on Twitter with respect these two pathologies and their vaccines. Results showed that in contrary on popular opinions, most of the messages published are non-negative. On the other hand, the analysis showed that some messages attracted a huge attention and provoked peaks in the number of published tweets, explaining some changes in the observed trends.


Assuntos
Vacinas contra Influenza , Influenza Humana , Sarampo , Mídias Sociais , Humanos , Vacinas contra Influenza/efeitos adversos , Influenza Humana/prevenção & controle , Sarampo/prevenção & controle
7.
Methods Inf Med ; 60(S 02): e89-e102, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34610645

RESUMO

OBJECTIVES: The aim of the study is to design an ontology model for the representation of assets and its features in distributed health care environments. Allow the interchange of information about these assets through the use of specific vocabularies based on the use of ontologies. METHODS: Ontologies are a formal way to represent knowledge by means of triples composed of a subject, a predicate, and an object. Given the sensitivity of network assets in health care institutions, this work by using an ontology-based representation of information complies with the FAIR principles. Federated queries to the ontology systems, allow users to obtain data from multiple sources (i.e., several hospitals belonging to the same public body). Therefore, this representation makes it possible for network administrators in health care institutions to have a clear understanding of possible threats that may emerge in the network. RESULTS: As a result of this work, the "Software Defined Networking Description Language-CUREX Asset Discovery Tool Ontology" (SDNDL-CAO) has been developed. This ontology uses the main concepts in network assets to represent the knowledge extracted from the distributed health care environments: interface, device, port, service, etc. CONCLUSION: The developed SDNDL-CAO ontology allows to represent the aforementioned knowledge about the distributed health care environments. Network administrators of these institutions will benefit as they will be able to monitor emerging threats in real-time, something critical when managing personal medical information.


Assuntos
Ontologias Biológicas , Software , Atenção à Saúde
8.
Sci Rep ; 11(1): 21096, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702888

RESUMO

Established nosological models have provided physicians an adequate enough classification of diseases so far. Such systems are important to correctly identify diseases and treat them successfully. However, these taxonomies tend to be based on phenotypical observations, lacking a molecular or biological foundation. Therefore, there is an urgent need to modernize them in order to include the heterogeneous information that is produced in the present, as could be genomic, proteomic, transcriptomic and metabolic data, leading this way to more comprehensive and robust structures. For that purpose, we have developed an extensive methodology to analyse the possibilities when it comes to generate new nosological models from biological features. Different datasets of diseases have been considered, and distinct features related to diseases, namely genes, proteins, metabolic pathways and genetical variants, have been represented as binary and numerical vectors. From those vectors, diseases distances have been computed on the basis of several metrics. Clustering algorithms have been implemented to group diseases, generating different models, each of them corresponding to the distinct combinations of the previous parameters. They have been evaluated by means of intrinsic metrics, proving that some of them are highly suitable to cover new nosologies. One of the clustering configurations has been deeply analysed, demonstrating its quality and validity in the research context, and further biological interpretations have been made. Such model was particularly generated by OPTICS clustering algorithm, by studying the distance between diseases based on gene sharedness and following cosine index metric. 729 clusters were formed in this model, which obtained a Silhouette coefficient of 0.43.


Assuntos
Biologia Computacional , Bases de Dados Factuais , Doença , Modelos Biológicos , Humanos
9.
Comput Struct Biotechnol J ; 19: 4559-4573, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34471499

RESUMO

Drug repurposing has become a widely used strategy to accelerate the process of finding treatments. While classical de novo drug development involves high costs, risks, and time-consuming paths, drug repurposing allows to reuse already-existing and approved drugs for new indications. Numerous research has been carried out in this field, both in vitro and in silico. Computational drug repurposing methods make use of modern heterogeneous biomedical data to identify and prioritize new indications for old drugs. In the current paper, we present a new complete methodology to evaluate new potentially repurposable drugs based on disease-gene and disease-phenotype associations, identifying significant differences between repurposing and non-repurposing data. We have collected a set of known successful drug repurposing case studies from the literature and we have analysed their dissimilarities with other biomedical data not necessarily participating in repurposing processes. The information used has been obtained from the DISNET platform. We have performed three analyses (at the genetical, phenotypical, and categorization levels), to conclude that there is a statistically significant difference between actual repurposing-related information and non-repurposing data. The insights obtained could be relevant when suggesting new potential drug repurposing hypotheses.

10.
Sci Rep ; 11(1): 13537, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188248

RESUMO

The ever-growing availability of biomedical text sources has resulted in a boost in clinical studies based on their exploitation. Biomedical named-entity recognition (bio-NER) techniques have evolved remarkably in recent years and their application in research is increasingly successful. Still, the disparity of tools and the limited available validation resources are barriers preventing a wider diffusion, especially within clinical practice. We here propose the use of omics data and network analysis as an alternative for the assessment of bio-NER tools. Specifically, our method introduces quality criteria based on edge overlap and community detection. The application of these criteria to four bio-NER solutions yielded comparable results to strategies based on annotated corpora, without suffering from their limitations. Our approach can constitute a guide both for the selection of the best bio-NER tool given a specific task, and for the creation and validation of novel approaches.

11.
Comput Methods Programs Biomed ; 207: 106233, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34157517

RESUMO

BACKGROUND AND OBJECTIVES: The growing integration of healthcare sources is improving our understanding of diseases. Cross-mapping resources such as UMLS play a very important role in this area, but their coverage is still incomplete. With the aim to facilitate the integration and interoperability of biological, clinical and literary sources in studies of diseases, we built DisMaNET, a system to cross-map terms from disease vocabularies by leveraging the power and interpretability of network analysis. METHODS: First, we collected and normalized data from 8 disease vocabularies and mapping sources to generate our datasets. Next, we built DisMaNET by integrating the generated datasets into a Neo4j graph database. Then we exploited the query mechanisms of Neo4j to cross-map disease terms of different vocabularies with a relevance score metric and contrasted the results with some state-of-the-art solutions. Finally, we made our system publicly available for its exploitation and evaluation both through a graphical user interface and REST APIs. RESULTS: DisMaNET contains almost half a million nodes and near nine hundred thousand edges, including hierarchical and mapping relationships. Its query capabilities enabled the detection of connections between disease vocabularies that are not present in major mapping sources such as UMLS and the Disease Ontology, even for rare diseases. Furthermore, DisMaNET was capable of obtaining more than 80% of the mappings with UMLS reported in MonDO and DisGeNET, and it was successfully exploited to resolve the missing mappings in the DISNET project. CONCLUSIONS: DisMaNET is a powerful, intuitive and publicly available system to cross-map terms from different disease vocabularies. Our study proves that it is a competitive alternative to existing mapping systems, incorporating the potential of network analysis and the interpretability of the results through a visual interface as its main advantages. Expansion with new sources, versioning and the improvement of the search and scoring algorithms are envisioned as future lines of work.


Assuntos
Vocabulário Controlado , Vocabulário , Algoritmos , Bases de Dados Factuais
12.
PeerJ ; 8: e8580, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32110491

RESUMO

BACKGROUND: Within the global endeavour of improving population health, one major challenge is the identification and integration of medical knowledge spread through several information sources. The creation of a comprehensive dataset of diseases and their clinical manifestations based on information from public sources is an interesting approach that allows one not only to complement and merge medical knowledge but also to increase it and thereby to interconnect existing data and analyse and relate diseases to each other. In this paper, we present DISNET (http://disnet.ctb.upm.es/), a web-based system designed to periodically extract the knowledge from signs and symptoms retrieved from medical databases, and to enable the creation of customisable disease networks. METHODS: We here present the main features of the DISNET system. We describe how information on diseases and their phenotypic manifestations is extracted from Wikipedia and PubMed websites; specifically, texts from these sources are processed through a combination of text mining and natural language processing techniques. RESULTS: We further present the validation of our system on Wikipedia and PubMed texts, obtaining the relevant accuracy. The final output includes the creation of a comprehensive symptoms-disease dataset, shared (free access) through the system's API. We finally describe, with some simple use cases, how a user can interact with it and extract information that could be used for subsequent analyses. DISCUSSION: DISNET allows retrieving knowledge about the signs, symptoms and diagnostic tests associated with a disease. It is not limited to a specific category (all the categories that the selected sources of information offer us) and clinical diagnosis terms. It further allows to track the evolution of those terms through time, being thus an opportunity to analyse and observe the progress of human knowledge on diseases. We further discussed the validation of the system, suggesting that it is good enough to be used to extract diseases and diagnostically-relevant terms. At the same time, the evaluation also revealed that improvements could be introduced to enhance the system's reliability.

13.
J Biomed Inform ; 94: 103206, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31077818

RESUMO

Over a decade ago, a new discipline called network medicine emerged as an approach to understand human diseases from a network theory point-of-view. Disease networks proved to be an intuitive and powerful way to reveal hidden connections among apparently unconnected biomedical entities such as diseases, physiological processes, signaling pathways, and genes. One of the fields that has benefited most from this improvement is the identification of new opportunities for the use of old drugs, known as drug repurposing. The importance of drug repurposing lies in the high costs and the prolonged time from target selection to regulatory approval of traditional drug development. In this document we analyze the evolution of disease network concept during the last decade and apply a data science pipeline approach to evaluate their functional units. As a result of this analysis, we obtain a list of the most commonly used functional units and the challenges that remain to be solved. This information can be very valuable for the generation of new prediction models based on disease networks.


Assuntos
Doença , Desenvolvimento de Medicamentos , Reposicionamento de Medicamentos , Humanos , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...