Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(10): 6706-6720, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38421812

RESUMO

Two-dimensional (2D) halide perovskites are exquisite semiconductors with great structural tunability. They can incorporate a rich variety of organic species that not only template their layered structures but also add new functionalities to their optoelectronic characteristics. Here, we present a series of new methylammonium (CH3NH3+ or MA)-based 2D Ruddlesden-Popper perovskites templated by dimethyl carbonate (CH3OCOOCH3 or DMC) solvent molecules. We report the synthesis, detailed structural analysis, and characterization of four new compounds: MA2(DMC)PbI4 (n = 1), MA3(DMC)Pb2I7 (n = 2), MA4(DMC)Pb3I10 (n = 3), and MA3(DMC)Pb2Br7 (n = 2). Notably, these compounds represent unique structures with MA as the sole organic cation both within and between the perovskite sheets, while DMC molecules occupy a tight space between the MA cations in the interlayer. They form hydrogen-bonded [MA···DMC···MA]2+ complexes that act as spacers, preventing the perovskite sheets from condensing into each other. We report one of the shortest interlayer distances (∼5.7-5.9 Å) in solvent-incorporated 2D halide perovskites. Furthermore, the synthesized crystals exhibit similar optical characteristics to other 2D perovskite systems, including narrow photoluminescence (PL) signals. The density functional theory (DFT) calculations confirm their direct-band-gap nature. Meanwhile, the phase stability of these systems was found to correlate with the H-bond distances and their strengths, decreasing in the order MA3(DMC)Pb2I7 > MA4(DMC)Pb3I10 > MA2(DMC)PbI4 ∼ MA3(DMC)Pb2Br7. The relatively loosely bound nature of DMC molecules enables us to design a thermochromic cell that can withstand 25 cycles of switching between two colored states. This work exemplifies the unconventional role of the noncharged solvent molecule in templating the 2D perovskite structure.

2.
Mater Horiz ; 10(2): 536-546, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36426759

RESUMO

Mixed-dimensional perovskites containing mixtures of organic cations hold great promise to deliver highly stable and efficient solar cells. However, although a plethora of relatively bulky organic cations have been reported for such purposes, a fundamental understanding of the materials' structure, composition, and phase, along with their correlated effects on the corresponding optoelectronic properties and degradation mechanism remains elusive. Herein, we systematically engineer the structures of bulky organic cations to template low-dimensional perovskites with contrasting inorganic framework dimensionality, connectivity, and coordination deformation. By combining X-ray single-crystal structural analysis with depth-profiling XPS, solid-state NMR, and femtosecond transient absorption, it is revealed that not all low-dimensional species work equally well as dopants. Instead, it was found that inorganic architectures with lesser structural distortion tend to yield less disordered energetic and defect landscapes in the resulting mixed-dimensional perovskites, augmented in materials with a longer photoluminescence (PL) lifetime, higher PL quantum yield (up to 11%), improved solar cell performance and enhanced thermal stability (T80 up to 1000 h, unencapsulated). Our study highlights the importance of designing templating organic cations that yield low-dimensional materials with much less structural distortion profiles to be used as additives in stable and efficient perovskite solar cells.

3.
Inorg Chem ; 60(22): 17276-17287, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34709031

RESUMO

A series of activated vinyl azoles was hydrophosphinated in the presence of a chiral palladacycle catalyst under mild conditions to give enantioenriched phosphine azoles with moderate enantioselectivities and yields. The racemic phosphine azoles were transformed into eleven novel chelating phosphine-N-heterocyclic carbene (NHC) platinum complexes. The drug efficacies of nine selected phosphine-NHC platinum(II) chlorides in two cancer cell lines (MKN74 and MCF7) were evaluated, and two were found to exhibit activities comparable to that of cisplatin.


Assuntos
Antineoplásicos/farmacologia , Quelantes/farmacologia , Metano/análogos & derivados , Compostos Organoplatínicos/farmacologia , Fosfinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Quelantes/síntese química , Quelantes/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Metano/química , Metano/farmacologia , Estrutura Molecular , Compostos Organoplatínicos/química , Fosfinas/química , Células Tumorais Cultivadas
4.
Chem Asian J ; 15(16): 2428-2436, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32592284

RESUMO

Potential widespread applications of organoarsenic chemistry have been limited by the inherent lack of safe and effective As-C bond formation reactions. Several alternative reagents and methods have been developed in the last few decades to address the hazards and drawbacks associated with traditional arsenic synthetic strategies. Herein, this minireview summarizes the advances made in nucleophilic, electrophilic, radical and metal-mediated As(III)-C bond formations while specifically highlighting the behavior of arsenic synthons with various well-established reagents (eg. Grignard reagents, organolithium compounds, organometallic reagents, radical initiators and Lewis/Brønsted bases). Avenues for asymmetric synthesis are also discussed, as are recent advances in organoarsenic chemistry suggesting that arsines exhibit novel reactivities independent from that of other relatively more well explored Group V cogeners.

5.
J Org Chem ; 85(22): 14763-14771, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32216341

RESUMO

The asymmetric catalytic P-H addition of racemic secondary phosphines to electrophilic α-diazoesters via P*-N bond formation is disclosed for the first time. Interaction between the diazoester and the palladium catalyst resulted in the unusually enhanced electrophilic ability of the terminal nitrogen in the diazo functionality, as opposed to the commonly expected formation of a metal carbene by nitrogen elimination. Further derivatization of the generated phosphinic hydrazones provided access to enantioenriched P-stereogenic diarylphosphinates via a simple transformation.

6.
Inorg Chem ; 59(6): 3874-3886, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32090541

RESUMO

A synthetic procedure for obtaining a chiral P,N ligand was developed by exploiting the versatility of the asymmetric hydrophosphination protocol catalyzed by a phosphapalladacycle complex. The addition of the synthesized ligand to various metal sources led to the generation of chiral and enantioenriched chelate complexes, which can be useful prototypes for catalyst design in the future. The resulting coordination compounds were comprehensively characterized by solid-state (X-ray crystallography) and solution-based (one- and two-dimensional NMR spectroscopy) techniques and natural bond orbital (density functional theory) analysis to determine their structural and key electronic features.

7.
Chem Commun (Camb) ; 55(73): 10936-10939, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31441914

RESUMO

A metal-free tandem double hydrophosphination of extended conjugated indandiones has been established. Mechanistic investigations confirmed the consecutive manner of the nucleophilic addition reaction. Complexation of the generated keto-diphosphine resulted in the formation of an unexpected tridentate bridging ligand with an anionic P,O-bidentate and a neutral P-monodentate coordination mode on two palladium units. In the presence of an external chiral auxiliary, the coordinated diphosphines could be separated into their enantiomeric forms.

8.
Chemistry ; 25(48): 11308-11317, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31293004

RESUMO

Synthetic challenges have significantly slowed the development of the catalytic asymmetric hydroarsination reaction despite it being a highly attractive C-As bond formation methodology. In addition, there is a poor understanding of the main reaction steps in such reactions which limit further development in the field. Herein, key intermediates of the hydroarsination reaction catalyzed by a PCP NiII -Cl pincer complex are presented upon investigating the reaction with DFT calculations, conductivity measurements, NMR spectroscopy, and catalytic screening. The novel Ni-Cl-As interaction proposed was then contrasted against known NiII -catalyzed hydrophosphination reactions to highlight dissimilarities between them even though P and As share a close group relationship. Lastly, the asymmetric hydroarsination of nitroolefins was further developed to furnish a library of chiral organoarsines in up to 99 % yield and 80 % ee under mild conditions (-20 °C to RT) between 5 to 210 mins.

9.
Dalton Trans ; 48(14): 4602-4610, 2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30888384

RESUMO

Given the periodic relationship of phosphines and arsines, is remodeling the catalytic asymmetric hydrophosphination reaction an efficient manner to develop the corresponding hydroarsination reaction? Herein, a chiral PCP-Pd(ii) pincer complex adept at generating enantioenriched phosphines was examined in the asymmetric hydroarsination reaction. Under distinct conditions, tertiary phosphines and arsines were generated in excellent yields (P: 96%, As: 91%) and ees (P: 90%, As: 85%). While secondary arsine reagents were not direct substitutes for the analogous phosphines, important parameters were identified which increased yield and ee of the hydroarsination reaction. Unlike the PCP-PdOAc pincer complex commonly used for hydrophosphinations, hydroarsination reactions involved a PCP-PdCl catalyst with 10 equiv. of CsF for optimal performance. Notable differences between the two reactions and their workup procedures were highlighted to guide further developments in the field. Lastly, respective mechanisms were proposed and contrasted for the activation of HEPh2 (E = P, As).

10.
Dalton Trans ; 48(3): 1108-1117, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30605200

RESUMO

Owing to their lipophilic nature and chemical stability, ferrocene and its derivatives have been widely explored as antimicrobial agents, in combination with other active chemical 'war heads'. A prime example is ferroquine, an analogue of chloroquine obtained by covalently bonding ferrocene to 4-aminoquinoline, which possesses superior efficacy against multi-drug resistant malaria parasites. Herein, we explored the possibility of combining the ferrocenyl moiety with a phosphine unit and the subsequent inclusion of gold(i) to derive a molecular framework with demonstrated potential in inhibiting parasitic diseases. A library of 24 compounds consisting of 5 non-functionalized ferrocenyl enones and 19 ferrocenyl phosphine derivatives were synthesized, verified and tested against Plasmodium (P.) falciparum, which allowed us to identify compounds with low micromolar potency against both normal and chloroquine-resistant strains. Through flow cytometry combined with microscopic examination of Giemsa-stained thin smears, we observed that most of the active compounds interfered with trophozoite development as well as schizont maturation. The gold complex, namely G3, derived from the hydrophosphination of the terminal furan bearing an enone substrate showed the highest inhibitory potential. We demonstrate that G3 is affecting the parasite's metabolic processes as evident from the swollen digestive vacuole. Furthermore, G3 significantly affected heme de-toxification as determined through the ß-hematin assay, which caused apparent oxidative stress on parasites leading to death. Collectively, these results point out the potential of gold-conjugated ferrocenyl phosphine derivatives as antimalarials targeting the digestive vacuole function and metabolism of parasites.


Assuntos
Antimaláricos/farmacologia , Compostos Ferrosos/farmacologia , Malária Falciparum/tratamento farmacológico , Metalocenos/farmacologia , Fosfinas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Vacúolos/efeitos dos fármacos , Animais , Antimaláricos/síntese química , Antimaláricos/química , Relação Dose-Resposta a Droga , Desenho de Fármacos , Compostos Ferrosos/síntese química , Compostos Ferrosos/química , Ouro/química , Ouro/farmacologia , Hemeproteínas/antagonistas & inibidores , Hemeproteínas/biossíntese , Células Endoteliais da Veia Umbilical Humana , Humanos , Malária Falciparum/microbiologia , Metalocenos/síntese química , Metalocenos/química , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Testes de Sensibilidade Parasitária , Fosfinas/síntese química , Fosfinas/química , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Vacúolos/metabolismo
11.
Dalton Trans ; 47(37): 13046-13051, 2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30156592

RESUMO

The iridation of (R)-N,N-dimethyl-1-(1-naphthyl)ethylamine in the presence of a base afforded an assortment of products ranging from organic molecules to coordinated systems and cyclometalated complexes. The transformation affirmed the postulation where steric effects within the coordination sphere favor a ß-hydride elimination-like decomposition pathway, competing alongside ortho-metalation, thus leading to iminium intermediates. The same procedure also generated an unprecedented carbocyclic η1,η2-cycloiridated species that could not be attained from the direct cyclometalation of its organic ligand.

12.
Chem Asian J ; 13(19): 2829-2833, 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30022614

RESUMO

Asymmetric addition of diarylphosphines to oxa- and azabicyclic alkenes proceeded in the presence of a chiral phosphapalladacycle catalyst and a mild acid at room temperature to give exclusively the enantioenriched addition products in excellent yields and good selectivities. Three new chiral carbon centers were generated stereoselectively by the catalytic hydrophosphination reaction.

13.
Chem Commun (Camb) ; 54(24): 3042-3044, 2018 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-29513327

RESUMO

The magnesium(i) complex [(XylNacnac)Mg]2 was employed as a highly efficient catalyst for the cyanosilylation of a variety of ketones with trimethylsilyl cyanide under mild conditions. In contrast to the traditional stoichiometric use of magnesium(i) complexes, 1 provides the first example of a truly catalytic application of Mg(i) complexes.

14.
ACS Omega ; 3(8): 8945-8951, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459027

RESUMO

Hitherto inaccessible multisubstituted thiochroman derivatives were constructed via the one-pot reaction of thiophenols with allylic alcohols catalyzed by 0.2 equiv triflic acid under metal-free conditions. A variety of thiochroman derivatives can be obtained by this straightforward protocol that allows the introduction of up to four substituents at various locations on the thiochroman skeleton. Relative conformations of all isolated products were confirmed by NOESY NMR studies, and a stepwise mechanism, proceeding via an allylic substitution-intramolecular cyclization protocol, is proposed on the basis of NMR experiments.

15.
J Org Chem ; 83(1): 69-74, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29181979

RESUMO

The well-defined heavy rare-earth ytterbium iodide complex 1 (L2YbI) has been successfully employed as an efficient catalyst for the hydroboration of a wide range of aldehydes and ketones with pinacolborane (HBpin) at room temperature. The protocol requires low catalyst loadings (0.1-0.5 mol %) and proceeds rapidly (>99% conversion in <10 min). Additionally, catalyst 1 shows a good functional group tolerance even toward the hydroxyl and amino moieties and displays chemoselective hydroboration of aldehydes over ketones under mild conditions.

16.
RSC Adv ; 8(51): 28960-28968, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-35547965

RESUMO

The development of new organometallic compounds as anticancer agents is currently an active area of research. Here, we report the design, synthesis and characterization of a panel of 10 new ferrocenyl-phosphine derivatives (FD1-FD10) and the analysis of their anti-proliferative activities in hematolymphoid cells representing non-Hodgkin cutaneous T-cell lymphoma (CTCL). The gold-coordinated ferrocenyl-phosphine complex FD10 exhibited a significant and dose-dependent cytotoxicity in 4 different CTCL cell lines - HuT78, HH, MJ and MyLa. FD10 concentrations causing 50% cell growth inhibition (IC50) of HuT78, HH, MJ and MyLa cells at 24 h were recorded to be 5.55 ± 0.20, 7.80 ± 0.09, 3.16 ± 0.10 and 6.46 ± 0.24 µM respectively. Further mechanistic studies showed that FD10 induced apoptosis in CTCL cells by an intrinsic pathway mediated via the activation of caspase-3 and poly(ADP-ribose)polymerase. It suppressed the expression and activity of STAT3 oncoprotein in CTCL cells. FD10 caused robust G0/G1 phase cell cycle arrest and reduced the expression levels of Akt S473 phosphorylation and c-Myc, both are key cell cycle regulator proteins. Taken together, this study highlights anticancer properties of the ferrocenyl-phosphine gold organometallic complex FD10 and suggests that further development of this novel class of molecule may contribute to new drug discovery for certain hematolymphoid malignancies.

17.
Chem Commun (Camb) ; 53(47): 6307-6310, 2017 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-28492693

RESUMO

A catalytic asymmetric hydroarsination reaction of an activated alkene viz. (E)-nitrostyrene was developed using chiral PCP Pt-, Pd- and Ni-pincer complexes as catalysts. The corresponding chiral tertiary arsine adduct was obtained in ees of up to 80% under mild reaction conditions using the PCP Ni-Cl pincer catalyst. The arsine adduct was furnished with catalyst loadings of 1-5 mol% and the reaction duration ranging from <5 min to 180 min. The subsequent coordination of the hydroarsination product to gold(i) chloride allowed for the confirmation of the stereochemistry of the arsine adduct via crystallographic analysis.

18.
Dalton Trans ; 46(4): 1311-1316, 2017 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-28070578

RESUMO

A chiral phosphine auxiliary was generated with excellent ee via catalytic asymmetric hydrophosphination of 3-(naphthalen-1-ylmethylene)pentane-2,4-dione. The subsequent metal complexation of the monophosphine yielded two different coordination complexes depending on the reaction conditions. The ortho-palladation of both coordination complexes resulted in the formation of a single dimeric phosphapalladacycle complex that could be further converted to the monomeric bisacetonitrile derivative. Moreover, the palladium complex exhibits interesting oxophilicity as the stable bisaquo derivative could be isolated and characterized crystallographically. The catalytic potential of the phosphapalladacycle was also demonstrated.

19.
Dalton Trans ; 45(34): 13449-55, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27488728

RESUMO

The impact of the structural attributes of chiral PC- and PCP-palladium catalysts was investigated in the asymmetric hydrophosphination of various heterocycle-functionalized enone substrates. Due to the architecture of the catalysts, they are confronted with potential catalyst deactivation arising from the coordination of the electron-rich heteroatoms (P, O, N and S) to the metal center. A systematic variation of the location and identity of the heteroatoms demonstrated the impact of structural modifications on the substrates, which have a significant influence on both yields (16-99%) and enantioselectivities (0-99%). A detailed discussion on the distinct catalytic mechanisms (intra- vs. inter-molecular addition) provides important information to explain the results obtained.

20.
Chem Commun (Camb) ; 52(22): 4211-4, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26912423

RESUMO

Cyclopalladation of the pyridyl-substituted chiral phosphine sulfide (N-P=S) and oxide (N-P=O) compounds afforded the asymmetric N-C(sp(3))*-S and N-C(sp(3))*-O pincer complexes. When applied as catalysts in asymmetric hydrophosphination, the newly developed aliphatic pincer catalyst could be recycled over three runs and obtained in large quantities via a one-pot "self-breeding" catalytic protocol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...