Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(29): 11881-11889, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38976239

RESUMO

Both solitary and tandem applications of residual chemical shift anisotropy (RCSA) and residual dipolar coupling (RDC) show great potential for the structural and configurational determination of organic molecules. A critical component of both RDC and RCSA methodologies is the alignment medium, whose availability is limited, especially for RCSA measurement. Moreover, reported RDC and RCSA acquisitions mainly rely on two experiments conducted under two different conditions, which are relatively time-consuming and easily cause experimental errors. Herein, a biphasic supramolecular lyotropic liquid crystalline (LLC) system was developed through the self-assembly of C21H43-CONH-V4K3-CONH2, which could act as an alignment medium for not only RDC but also RCSA extraction in DMSO-d6. Notably, the RCSA extraction was easily achieved via one-shot measurement from a single one-dimensional 13C NMR experiment, with no need for special instruments, devices, and correction. Relying on the biphasic LLC medium, meanwhile, RDC data were simply extracted from a single F1-coupled HSQC experiment, different from the standard protocol that requires two spectral acquisitions corresponding to the isotropic and anisotropic conditions. Collectively, the biphasic LLC medium is applicable for tandem RCSA and RDC measurements in one single sample, advancing the stereochemical elucidation of molecules of interest.

2.
Anal Chem ; 95(48): 17759-17765, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37996077

RESUMO

Multiple independent sets of residual dipolar couplings (RDCs) acquired by relying on different alignment media show the great potential for de novo structure determination of organic compounds. However, this methodology is severely compromised by the limited availability of multialignment media. In this work, an engineering strategy was developed to program the oligopeptide amphiphiles (OPAs) to create different peptide liquid crystal (LC) media for the acquisition of independent sets of RDCs. With no need for de novo design on peptide sequences, the molecular alignment can be simply modulated by varying the length of the hydrophobic tails within OPAs. Relying on these programmed peptide LC media, five independent sets of RDCs were extracted in a highly efficient and accurate manner. Because of the similar bulk composition of OPAs, this approach offers the significant advantage in circumventing the possible incompatibilities of analytes with one or several different alignment media, therefore avoiding the analysis complication. Notably, these peptide LC media show enantiodifferentiating properties, and the enantiodiscriminating capabilities could also be optimized through the programmed strategy. Furthermore, we show that these media are compatible with different polar solvents, allowing the possible de novo structure elucidation of organic compounds with varied polarities and solubilities.

3.
J Control Release ; 362: 565-576, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37673305

RESUMO

Tumor recurrence and chronic bacterial infection constitute two major criteria in postsurgical intervention for malignant melanoma. One plausible strategy is the equipment of consolidation therapy after surgery, which relies on adjuvants to eliminate the residual tumor cells and inhibit bacterial growth. Until now, a number of proof-of-concept hybrid nanoadjuvants have been proposed to combat tumor recurrence and postsurgical bacterial infection, which may suffer from the potential bio-unsafety or involve complex design and synthesis. The batch-to-batch inconsistencies in drug composition further delay the clinical trials. To circumvent these issues, herein we develop a programmable strategy to generate lipopeptide nanotherapeutics with identical constitution for tandem intervention of postsurgical bacterial infection and cancer recurrence of melanoma. Increasing the number of hydrophobic linoleic acid within lipopeptides has been found to be a simple and practical strategy to improve the therapeutic outcomes for both tumor cells and bacteria. Self-assembled lipopeptide nanotherapeutics with two linoleic acid molecules possesses excellent antitumor activity and antimicrobial function toward both susceptible strains and drug-resistant bacteria. Arising from the incorporation of unsaturated linoleic acid, the unavoidable hemolysis of cationic peptide drugs was effectively alleviated. In vivo therapeutic abilities of postsurgical infection and tumor recurrence were investigated in BALB/c nude mice bearing a B16-F10 tumor model, with an incomplete surgical resection and in situ infection by methicillin-resistant Staphylococcus aureus (MRSA). Self-assembled lipopeptide nanotherapeutics could effectively inhibit cancer cell growth and bacterial infection, as well as promote wound healing. The easily scalable large-scale production, broad-spectrum antitumor and antibacterial bioactivities as well as fixed component endows lipopeptide nanotherapeutics as promising adjuvants for clinically postsurgical therapy of melanoma.

4.
J Control Release ; 359: 347-358, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37277054

RESUMO

Temozolomide (TMZ) is an oral DNA-alkylating drug used in colorectal cancer (CRC) chemotherapy. In this work, we proposed a safe and biomimetic platform for macrophages-targeted delivery of TMZ and O6-benzylguanine (O6-BG). TMZ was loaded in poly (D, l-lactide-coglycolide) (PLGA) nanoparticles, followed by sequential coating with O6-BG-grafted chitosan (BG-CS) layers and yeast shell walls (YSW) via layer-by-layer assembly (LBL) process, forming TMZ@P-BG/YSW biohybrids. Due to the yeast cell membrane-camouflage, TMZ@P-BG/YSW particles exhibited significantly enhanced colloidal stability as well as low premature drug leakage in simulated gastrointestinal conditions. In vitro drug release profiles of TMZ@P-BG/YSW particles revealed noticeable higher TMZ release in simulated tumor acidic environment within 72 h. Meanwhile, O6-BG could down-regulate MGMT expression in CT26 colon carcinoma cells, ultimately facilitating TMZ-induced tumor cell death. After oral delivery of yeast cell membrane-camouflaged particles containing fluorescent tracer (Cy5), TMZ@P-BG/YSW and bare YSW displayed high retention time of 12 h in the colon and small intestine (ileum). Correspondingly, oral gavage administration of TMZ@P-BG/YSW particles afforded favorable tumor-specific retention and superior tumor growth inhibition. Overall, TMZ@P-BG/YSW is validated to be a safe, targetable and effective formulation, paving a new avenue towards highly effective and precise treatment of malignancies.


Assuntos
Nanopartículas , Neoplasias , Dacarbazina/farmacologia , Saccharomyces cerevisiae , O(6)-Metilguanina-DNA Metiltransferase , Temozolomida , Membrana Celular/metabolismo , Antineoplásicos Alquilantes/farmacologia , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico
5.
Nanoscale ; 15(17): 7820-7828, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37051680

RESUMO

Residual Dipolar Coupling (RDC), acquired relying on weakly alignment media, is highly valuable for the structural elucidation of organic molecules. Arising from the striking features of no background signals and low critical concentrations, two-dimensional (2D) liquid crystals (LCs) show the clear advantages of acting as alignment media to measure RDCs. So far, creating multisolvent compatible 2D LC media through a simple and versatile method is still formidably challenging. Herein, we report the rapid creation of aligned media based on the Ti3C2Tx MXene, which self-aligned in multiple co-solvents including CH3OH-H2O, DMSO-H2O, DMF-H2O, and acetone-H2O. We demonstrated the applicability of these aligned media for the RDC measurement of small organic molecules with different polarities and solubilities. Notably, Ti3C2Tx MXene LCs without chemical modification enabled RDC measurements on aromatic molecules. The straightforward preparation of Ti3C2Tx media and its compatibility with multiple solvents will push RDC measurement as a routine methodology for structural elucidation. It may also facilitate the investigation of solvation effects on conformational dynamics.

6.
Chemistry ; 29(11): e202300242, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36744429

RESUMO

Invited for the cover of this issue are Zhao Chen at Jiangxi Science and Technology Normal University and Yue Sun at Tiangong University. For this cover picture, yellow ball containing character "D" represents donor, green ball containing character "A" represents acceptor. The image depicts eight donor-donor-acceptor-type carbazole derivatives that display full-color emission, and a luminogen that shows red to near-infrared mechano-fluorochromism and a photodynamic therapy effect. Read the full text of the article at 10.1002/chem.202203797.

7.
Chemistry ; 29(11): e202203797, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36545826

RESUMO

The preparation of multifunctionalized luminophores with full-color emission based on an identical core skeleton is a significative but challenging research topic. In this work, eight donor-donor-acceptor (D-D-A)-type luminogens based on a central carbazole core bearing a C6 hydrocarbon chain were designed by using different kinds of donor and acceptor units on the left and right, and synthesized in good yields. These D-D-A carbazole derivatives display deep-blue, sky-blue, cyan, green, yellow-green, yellow, orange and red fluorescence in the solid state, achieving full-color emission covering the whole visible light range under UV light illumination. Notably, the dicyano-functionalized triphenylamine-containing carbazole derivative exhibits rare aggregation-induced near-infrared emission and red-to-near-infrared mechano-fluorochromism with high contrast beyond 100 nm. Furthermore, the red-emissive luminogen can serve as a potential candidate for cell imaging and photodynamic therapy (PDT). This work not only provides reference for the construction of full-color emissive systems but also opens a new avenue to the preparation of multifunctionalized luminophores capable of simultaneous application in near-Infrared mechanical-force sensors and PDT fields.

8.
Acta Biomater ; 154: 359-373, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36191775

RESUMO

The nonselective membrane disruption of antimicrobial peptides (AMPs) helps in combating the antibacterial resistance. But their overall positive charges lead to undesirable hemolysis and toxicity toward normal living cells, as well as the rapid clearance from blood circulation. In consequence, developing smart AMPs to optimize the antimicrobial outcomes is highly urgent. Relying on the local acidity of microbial infection sites, in this work, we designed an acidity-triggered charge reversal nanotherapeutics with adaptable geometrical morphology for bacterial targeting and optimized therapy. C16-A3K4-CONH2 was proposed and the ε-amino groups in lysine residues were acylated by dimethylmaleic amide (DMA), enabling the generated C16-A3K4(DMA)-CONH2 to self-assemble into negatively charged spherical nanostructure, which relieved the protein adsorption and prolonged blood circulation in vivo. After the access of C16-A3K4(DMA)-CONH2 into the microbial infection sites, acid-sensitive ß-carboxylic amide would hydrolyze to regenerate the positive C16-A3K4-CONH2 to destabilize the negatively charged bacterial membrane. In the meanwhile, attractively, the self-assembled spherical nanoparticle transformed to rod-like nanostructure, which was in favor of the efficient binding with bacterial membranes due to the larger contact area. Our results showed that the acid-activated AMP nanotherapeutics exhibited strong and broad-spectrum antimicrobial activities against Yeast, Gram-positive Staphylococcus aureus, Gram-negative Escherichia coli, and methicillin-resistant Staphylococcus aureus (MRSA). Moreover, the biocompatible lipopeptide nanotherapeutics dramatically improved the dermapostasis caused by bacterial infection. The strategy of merging pathology-activated therapeutic function and morphological adaptation to augment therapeutic outcomes shows the great potential for bacterial inhibition. STATEMENT OF SIGNIFICANCE: The overall positive charges of antimicrobial peptides (AMPs) lead to undesirable hemolysis and nonselective toxicity, as well as the rapid clearance from blood circulation. Infection-activated lipopeptide nanotherapeutics with adaptable geometrical morphology were developed to address these issues. The self-assembled lipopeptide was pre-decorated to reverse the positive charge to reduce the hemolysis and nonselective cytotoxicity. After accessing the acidic infection sites, the nanotherapeutics recovered the positive charge to destabilize negatively charged bacterial membranes. Meanwhile, the morphology of self-assembled nanotherapeutics transformed from spherical nanoparticles to rod-like nanostructures in the lesion site, facilitating the improved association with bacterial membranes to boost the therapeutic efficiency. These results provide new design rationale for AMPs developed for bacterial inhibition.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Humanos , Lipopeptídeos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Bactérias , Hemólise , Amidas , Antibacterianos/farmacologia , Antibacterianos/química
9.
J Phys Chem Lett ; 13(39): 9232-9237, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36173107

RESUMO

Hydrogen sulfide (H2S), as the third gasotransmitter, has an important impact on physiological and pathological activities. Herein, we fabricated an artificial nanochannel with a conductance value of 2.01 nS via a supramolecular coordination strategy. Benefiting from the unique H2S-mediated covalent reaction, the nanochannel biosensor could change from ON to OFF states with the addition of H2S. Furthermore, this nanochannel directed the ion transport, showing a high rectification ratio as well as gating ratio. Subsequently, theoretical simulations were conducted to help to reveal the possible mechanism of the functionalized nanochannel. This study can provide insights for better understanding the process of H2S-regulated biological channels and fabricating gas gated nanofluids.


Assuntos
Técnicas Biossensoriais , Gasotransmissores , Sulfeto de Hidrogênio , Transporte de Íons
10.
Chem Sci ; 13(20): 5838-5845, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35685790

RESUMO

NMR spectroscopy in anisotropic media has emerged as a powerful technique for the structural elucidation of organic molecules. Its application requires weak alignment of analytes by means of suitable alignment media. Although a number of alignment media, that are compatible with organic solvents, have been introduced in the last 20 years, acquiring a number of independent, non-linearly related sets of anisotropic NMR data from the same organic solvent system remains a formidable challenge, which is however crucial for the alignment simulations and deriving dynamic and structural information of organic molecules unambiguously. Herein, we introduce a programmable strategy to construct several distinct peptide-based alignment media by adjusting the amino acid sequence, which allows us to measure independent sets of residual dipolar couplings (RDCs) in a highly efficient and accurate manner. This study opens a new avenue for de novo structure determination of organic compounds without requiring prior structural information.

11.
Chem Commun (Camb) ; 58(42): 6227-6230, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35510582

RESUMO

The short lifetime of singlet oxygen reduces its accumulation in the endoplasmic reticulum, which limits the output of photodynamic therapy. A nanodevice with functions of singlet oxygen production, storage and release can improve the lifetime of singlet oxygen for enhancing phototherapeutic efficacy.


Assuntos
Fotoquimioterapia , Oxigênio Singlete , Fármacos Fotossensibilizantes/farmacologia
12.
ACS Nano ; 16(4): 5454-5462, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35311253

RESUMO

The formation of lyotropic liquid crystals (LCs) in two-dimensional (2D) colloidal dispersions enables the production of mesoscopic/macroscopic ordered materials from nanoscale building blocks. In contrast to graphene oxide (GO) LCs, the practical applications of MXene LCs are less exploited. This study bridges the gap by utilizing a simple and versatile fabrication method to prepare Ti3C2Tx MXene LC that can be applied as a background-free alignment medium for the residual dipolar coupling (RDC) measurement of organic molecules. Ti3C2Tx LC displays the size- and concentration-dependent alignment degree. Ti3C2Tx nanoflakes with an average size of around 600 nm can provide the quadrupolar 2H splitting of 71 Hz at a concentration of 50 mg/mL and show excellent fluidity at such a high concentration. Compared with other alignment media, Ti3C2Tx LC exhibits the features of no-background and narrow line broadening, which actualizes the acquirement of clean and high-quality NMR spectra for the accurate RDC extraction. Notably, the alignment of LCs is determined to be maintainable in the redispersed solution after freeze-drying, providing the great convenience for the preparation of alignment Ti3C2Tx media, long-term sample preservation, and quantitative evaluation of alignment degree. Meanwhile, the alignment LC media for RDC measurement can be established in other MXenes such as Ti2CTx and Ti3CNTx. Collectively, our findings demonstrate the potential of creating various alignment media from the fascinating MXene family.

13.
ACS Appl Mater Interfaces ; 14(1): 159-171, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34929082

RESUMO

An "antibiotic-free strategy" provides a viable option to address bacterial infections, especially for the "superbug" challenge. However, the undesirable antibacterial activity of antibiotic-free agents hinders their practical applications. In this study, we developed a combination antibacterial strategy of coupling peptide-drug therapy with chemodynamic therapy (CDT) to achieve the effective bacterial inhibition. An amphiphilic oligopeptide (LAOOH-OPA) containing a therapeutic unit of D(KLAK)2 peptide and a hydrophobic linoleic acid hydroperoxide (LAHP) was designed. The positively charged D(KLAK)2 peptide with an α-helical conformation enabled rapid binding with microbial cells via electrostatic interaction and subsequent membrane insertion to deactivate the bacterial membrane. When triggered by Fe2+, moreover, LAHP could generate singlet oxygen (1O2) to elicit lipid bilayer leakage for enhanced bacteria inhibition. In vitro assays demonstrated that the combination strategy possessed excellent antimicrobial activity not only merely toward susceptible strains (Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli) but also toward methicillin-resistant Staphylococcus aureus (MRSA). On the mouse skin abscess model induced by S. aureus, self-assembled LAOOH-OPA exhibited a more significant bacteria reduction (1.4 log10 reduction) in the bioburden compared to that of the standard vancomycin (0.9 log10 reduction) without apparent systemic side effects. This combination antibacterial strategy shows great potential for effective bacterial inhibition.


Assuntos
Antibacterianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Ácidos Linoleicos/uso terapêutico , Peróxidos Lipídicos/uso terapêutico , Nanopartículas/uso terapêutico , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Animais , Antibacterianos/toxicidade , Peptídeos Catiônicos Antimicrobianos/toxicidade , Desenho de Fármacos , Escherichia coli/efeitos dos fármacos , Feminino , Ácidos Linoleicos/toxicidade , Peróxidos Lipídicos/toxicidade , Camundongos Endogâmicos BALB C , Nanopartículas/toxicidade , Oxigênio Singlete/metabolismo , Staphylococcus aureus/efeitos dos fármacos
14.
ACS Biomater Sci Eng ; 7(7): 3361-3369, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34180219

RESUMO

Recently, smart nanomaterials from peptide self-assembly have received extensive attention in the field of biological and medical applications. Through rationally designing the molecular structure, we constructed a borono-peptide that self-assembled into well-defined nanofibers. Relying on the specific recognition between the vicinal diol compound and boronic acid, a novel alizarin red S (ARS)-borono-peptide (BP) spherical nanoindicator was fabricated, accompanying with the emission of strong fluorescent signal. The fluorescent nanoindicator displayed an intense response to copper(II) ions and underwent the fluorescent "turn-off" due to the strong binding-induced displacement. Originating from the high selectivity toward copper(II) ions, good biocompatibility and cancer cell targeting, the nanoindicator offered the opportunity to image copper(II) ions in cancer cells via fluorescent change.


Assuntos
Cobre , Corantes Fluorescentes , Antraquinonas , Humanos , Íons , Peptídeos
15.
Chem Commun (Camb) ; 57(50): 6181-6184, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34047742

RESUMO

Herein, we have developed a solvent-tailored ordered self-assembly strategy to create anisotropic nanomaterials. A trace amount of water has been found to be a predominant factor to direct peptide self-assembly into an anisotropic meso-matrix in DMSO. The obtained meso-matrix was applied to measure the anisotropic RDC parameter of organic molecules for structural elucidation.


Assuntos
Dimetil Sulfóxido/química , Oligopeptídeos/síntese química , Tensoativos/síntese química , Anisotropia , Estrutura Molecular , Oligopeptídeos/química , Solventes/química , Tensoativos/química
16.
ACS Appl Mater Interfaces ; 13(23): 27255-27261, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34029047

RESUMO

Gas-responsive nanochannels have great relevance for applications in many fields. Inspired by CO2-sensitive ion channels, herein we present an approach for designing solid-state nanochannels that allow controlled regulation of ion transport in response to alternate CO2/N2 stimuli. The pillar[5]arene (P5N) bearing diethylamine groups can convert into the water-soluble host P5C, containing cationic tertiary ammonium salt groups after absorbing CO2. Subsequently, the nanochannel walls are tailored using P5N-based host-guest chemistry. The ion transport rate of K+ in the P5N nanochannels under CO2 was 1.66 × 10-4 mol h-1 m-2, whereas that under N2 was 7.98 × 10-4 mol h-1 m-2. Notably, there was no significant change to the ion current after eight cycles, which may indicate the stability and repeatability of CO2-activated ion nanochannels. It is speculated that the difference in ion conductance resulted from the change in wettability and surface charge within the nanochannels in response to the gas stimuli. Achieving CO2-activated ion transport in solid-state nanochannels opens new avenues for biomimetic nanopore systems and advanced separation processes.

17.
Angew Chem Int Ed Engl ; 59(39): 17097-17103, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32573888

RESUMO

Residual dipolar coupling (RDC), a robust anisotropic NMR parameter for structural elucidation of organic molecules, is only accessible in an anisotropic environment. Herein, we introduce a novel alignment medium based on the molecular self-assembly of oligopeptide amphiphile (OPA). This medium is compatible with different intermediate and polar solvent systems, such as CD3 OD, [D6 ]DMSO, and D2 O. The preparation of the OPA-based medium is simple and rapid, while only very weak background signals were observed from OPAs. Furthermore, we show that the purity of OPA has only a minor influence on the quality of the RDC data. These advantages allow RDC measurements of organic molecules with different polarities and solubilities with high efficiency and accuracy.

18.
Glob Chall ; 4(2): 1900068, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32042445

RESUMO

Hyaluronic acid (HA)-based hydrogels have been receiving increasing attention for wound management. However, pure HA hydrogels usually exhibit weak mechanical strength and poor anti-infection. Herein, a hybrid HA-based hydrogel (PDA-HA) comprised of polydopamine (PDA) and thiolated hyaluronic acid (HA-SH) is developed based on the Michael addition reaction. The introduction of PDA into HA hydrogel can decrease the critical gel concentration, improve the cell affinity and tissue adhesion, as well as endow the hydrogel with efficient free-radical scavenging ability. Combining the merits of good biocompatibility and moist environment from HA hydrogel with excellent tissue adhesiveness and free radical scavenging capability from PDA, this cross-linked PDA-HA hybrid hydrogel exhibits great potential for creating antimicrobial wound medical dressings.

19.
Biomaterials ; 232: 119738, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31901695

RESUMO

In recent years, research trend has gradually removed from a concentration on monotherapy to combination therapy for fighting cancer. Combination photo-chemotherapy, including photodynamic-chemotherapy, photothermal-chemotherapy, as well as photodynamic-photothermal-chemotherapy, has demonstrated the priorities to elevate cancer therapeutic efficacies and diminish undesired side effects through different mechanisms in cancer treatment. In this review, we summarize the most recent progress in designing mesoporous silica-based nanoplatforms for combination delivery of multiple therapeutic agents, and discuss the treatment outcome in cancer by combining photodynamic therapy (PDT) and/or photothermal therapy (PTT) with chemotherapy. Furthermore, we highlight the drawbacks and challenges of employing mesoporous silica-based combinational formulations for effective cancer photo-chemotherapy, which might provide new guidelines for development of photo-chemo combination cancer treatments.


Assuntos
Neoplasias , Fotoquimioterapia , Terapia Combinada , Quimioterapia Combinada , Humanos , Neoplasias/tratamento farmacológico , Dióxido de Silício/uso terapêutico
20.
ACS Appl Bio Mater ; 3(12): 8989-8996, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35019575

RESUMO

Despite the rapid progress in peptide liquid crystals (LCs) due to their prominent properties, our investigation on flexible peptide-based LCs is incomplete, mainly resulted from their unclear formation mechanisms and unexploited applications in organic solvents. Here, we develop a lyotropic LC based on a flexible oligopeptide amphiphile, which aggregates into aligned cylinder-like nanostructures in dimethyl sulfoxide (DMSO). The formation mechanism of lyotropic LC in DMSO was probed by the experimental investigation and molecular dynamics simulation, indicating that the hydrogen bonding and hydrophobic and electrostatic interactions contribute to the formation of ordered nanostructures in the organic solvent. Arising from the orientational order and suitable fluidity, we exploit the application of lyotropic LC as an aligned medium to measure the residual dipolar couplings of bioactive molecules. This study not only offers the understanding of the mechanism to create LC systems without rigid aromatic groups but also expands the applications of ordered bottom-up nanomaterials in organic solvents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA