Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(8): e0290063, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37585446

RESUMO

This study investigates thermomechanical stress in cryopreservation by vitrification of the heart, while exploring the effects of nanowarming-assisted recovery from cryogenic storage. This study expands upon a recently published study, combining experimental investigation and thermal analysis of cryopreservation on a rat heart model. Specifically, this study focuses on scenarios with variable concentrations of silica-coated iron-oxide nanoparticles (sIONPs), while accounting for loading limitations associated with the heart physiology, as well as the properties of cryoprotective agent (CPA) solution and the geometry of the container. Results of this study suggest that variable sIONP concentration based on the heart physiology will elevate mechanical stresses when compared with the mathematically simplified, uniform distribution case. The most dangerous part of rewarming is below glass transition and at the onset of nanowarming past the glass transition temperature on the way for organ recovery from cryogenic storage. Throughout rewarming, regions that rewarm faster, such as the chambers of the heart (higher sIONP concentration), undergo compressive stresses, while the slower rewarming regions, such as the heart myocardium (low sIONP concentration), undergo tension. Being a brittle material, the vitrified organ is expected to fail under tension in lower stresses than in compression. Unfortunately, the location and magnitude of the maximum stress in the investigated cases varied, while general rules were not identified. This investigation demonstrates the need to tailor the thermal protocol of heart cryopreservation on a case-by-case basis, since the location, orientation, magnitude, and instant at which the maximum mechanical stress is found cannot be predicted a priori. While thermomechanical stress poses a significant risk to organ integrity, careful design of the thermal protocol can be instrumental in reducing the likelihood of structural damage, while taking full advantage of the benefits of nanowarming.


Assuntos
Criopreservação , Coração , Vitrificação , Animais , Humanos , Ratos , Criopreservação/métodos , Estresse Mecânico , Temperatura , Coração/fisiologia , Modelos Biológicos
2.
Cryobiology ; 111: 9-15, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36948380

RESUMO

This study investigates the feasibility of ice-free isochoric vitrification for cryopreservation applications using mathematical modeling, computation tools, and the underlying principles of thermo-mechanics. This study is triggered by an increasing interest in the possibility of isochoric vitrification, following promising experimental results of isochoric cryopreservation. In general, isochoric cryopreservation is the preservation of biological materials in subzero temperatures in a rigid-sealed container, where some ice crystallization creates favorable pressure elevation due to the anomaly of water expansion upon ice Ih formation. Vitrification on the other hand is the transformation of liquid into an amorphous solid in the absence of any crystals, which is typically achieved by rapid cooling of a highly viscous solution. The current study presents a mathematical model for vitrification under variable pressure conditions, building upon a recently published thermo-mechanics modeling approach for isochoric cryopreservation. Using the physical properties of dimethyl sulfoxide (DMSO) as a representative cryoprotective agent (CPA), this study suggests that vitrification under isochoric conditions is not feasible, essentially since the CPA solution contracts more than the isochoric chamber by an order of magnitude. This differential contraction can lead to absolute zero pressure in the isochoric chamber, counteracting the premise of the isochoric cryopreservation process. It is concluded that the only alternative to prevent ice formation while benefiting from the potential advantages of higher pressures is to create the required pressures by external means, and not merely by passively enclosing the specimen in an isochoric chamber.


Assuntos
Criopreservação , Vitrificação , Criopreservação/métodos , Temperatura Baixa , Crioprotetores/química , Transição de Fase
3.
PLoS One ; 18(3): e0282613, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36893176

RESUMO

This study presents a simplified thermal-fluids (TF) mathematical model to analyze large surface deformations in cryoprotective agents (CPA) during cryopreservation by vitrification. The CPA deforms during vitrification due to material flow caused by the combined effects of thermal gradients within the domain, thermal contraction due to temperature, and exponential increase in the viscosity of the CPA as it is cooled towards glass transition. While it is well understood that vitrification is associated with thermo-mechanical stress, which might lead to structural damage, those large deformations can lead to stress concentration, further intensifying the probability to structural failure. The results of the TF model are experimentally validated by means of cryomacroscopy on a cuvette containing 7.05M dimethyl sulfoxide (DMSO) as a representative CPA. The TF model presented in this study is a simplified version of a previously presented thermo-mechanics (TM) model, where the TM model is set to solve the coupled heat transfer, fluid mechanics and solid mechanics problems, while the TF model omits further deformations in the solid state. It is demonstrated in this study that the TF model alone is sufficient to capture large-body deformations during vitrification. However, the TF model alone cannot be used to estimate mechanical stresses, which become significant only when the deformation rates become so small that the deformed body practically behaves as an amorphous solid. This study demonstrates the high sensitivity of deformation predictions to variation in material properties, chief among which are the variations of density and viscosity with temperature. Finally, this study includes a discussion on the possibility of turning on and off the TF and TM models in respective parts of the domain, in order to solve the multiphysics problem in a computationally cost-effective manner.


Assuntos
Criopreservação , Vitrificação , Criopreservação/métodos , Crioprotetores/farmacologia , Crioprotetores/química , Dimetil Sulfóxido/farmacologia , Modelos Teóricos
4.
J Heat Transfer ; 144(3): 031202, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35833152

RESUMO

This study explores thermal design aspects of nanowarming-assisted recovery of the heart from indefinite cryogenic storage, where nanowarming is the volumetric heating effect of ferromagnetic nanoparticles excited by a radio frequency electromagnet field. This study uses computational means while focusing on the human heart and the rat heart models. The underlying nanoparticle loading characteristics are adapted from a recent, proof-of-concept experimental study. While uniformly distributed nanoparticles can lead to uniform rewarming, and thereby minimize adverse effects associated with ice crystallization and thermomechanical stress, the combined effects of heart anatomy and nanoparticle loading limitations present practical challenges which this study comes to address. Results of this study demonstrate that under such combined effects, nonuniform nanoparticles warming may lead to a subcritical rewarming rate in some parts of the domain, excessive heating in others, and increased exposure potential to cryoprotective agents (CPAs) toxicity. Nonetheless, the results of this study also demonstrate that computerized planning of the cryopreservation protocol and container design can help mitigate the associated adverse effects, with examples relating to adjusting the CPA and/or nanoparticle concentration, and selecting heart container geometry, and size. In conclusion, nanowarming may provide superior conditions for organ recovery from cryogenic storage under carefully selected conditions, which comes with an elevated complexity of protocol planning and optimization.

5.
Adv Mater Technol ; 7(3)2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35668819

RESUMO

To extend the preservation of donor hearts beyond the current 4-6 h, this paper explores heart cryopreservation by vitrification-cryogenic storage in a glass-like state. While organ vitrification is made possible by using cryoprotective agents (CPA) that inhibit ice during cooling, failure occurs during convective rewarming due to slow and non-uniform rewarming which causes ice crystallization and/or cracking. Here an alternative, "nanowarming", which uses silica-coated iron oxide nanoparticles (sIONPs) perfusion loaded through the vasculature is explored, that allows a radiofrequency coil to rewarm the organ quickly and uniformly to avoid convective failures. Nanowarming has been applied to cells and tissues, and a proof of principle study suggests it is possible in the heart, but proper physical and biological characterization especially in organs is still lacking. Here, using a rat heart model, controlled machine perfusion loading and unloading of CPA and sIONPs, cooling to a vitrified state, and fast and uniform nanowarming without crystallization or cracking is demonstrated. Further, nanowarmed hearts maintain histologic appearance and endothelial integrity superior to convective rewarming and indistinguishable from CPA load/unload control hearts while showing some promising organ-level (electrical) functional activity. This work demonstrates physically successful heart vitrification and nanowarming and that biological outcomes can be expected to improve by reducing or eliminating CPA toxicity during loading and unloading.

6.
PLoS One ; 17(4): e0267852, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35482795

RESUMO

A new mathematical model is proposed for the analysis of thermo-mechanics effects during isochoric cryopreservation. In that process, some ice crystallization in a fixed-volume container drives pressure elevation, which may be favorable to the preservation of biological material when it resides in the unfrozen portion of the same container. The proposed model is comprehensive, integrating for the first time concepts from the disparate fields of thermodynamics, heat transfer, fluid mechanics, and solid mechanics. The novelty in this study is in treating the cryopreserved material as having a pseudo-viscoelastic behavior over a very narrow temperature range, without affecting the mechanical behavior of the material in the rest of the domain. This unique approach permits treating the domain as a continuum, while avoiding the need to trace freezing fronts and sperate the analysis to liquid and solid subdomains. Consistent with the continuum approach, the heat transfer problem is solved using the enthalpy approach. The presented analysis focusses on isochoric cooling of pure water between standard atmospheric conditions and the triple point of liquid water, ice Ih, and ice III (-22°C and 207.4 MPa). The proposed model is also applicable to isochoric vitrification, by substituting the pseudo-viscoelastic material model with the real viscosity model of the vitrifying material. Results of this study display good agreement with phase-diagram data at steady state, and with experimental data from the literature. Furthermore, this study provides a venue to discussing experimentation aspects of isochoric cryopreservation. The proposed model is further demonstrated on a 3D problem, while discussing scale considerations, crystallization conditions, and transient effects. Notably, the new model can be used to bridge the gap between limited pressure and temperature measurements during cryopreservation and the analysis of the continuum. Arguably, this study presents the most advanced thermo-mechanics model to solve practical problems relating to isochoric cryopreservation.


Assuntos
Gelo , Isocoros , Criopreservação/métodos , Vitrificação , Água
7.
Cryobiology ; 103: 70-80, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34543621

RESUMO

Circumventing ice formation is critical to successful cryopreservation by vitrification of large organs. While ice formation during the cooling part of the cryogenic protocol is dictated by the evolving thermal conditions, ice formation during the rewarming part of the cryogenic protocol is also dependent on the history of cooling and storage conditions. Furthermore, while the exothermic effect of ice crystallization during cooling tends to adversely slow down the desired high cooling rates to ensure ice-free preservation, the same effect under some conditions tends to assist acceleration of rewarming during recovery of the specimen from cryogenic storage when limited crystallization does occur. The current study proposes a computational framework to study the thermal effects of crystallization during recovery from cryogenic storage, using a semi-empirical approach to account for the relationship between latent heat effects and the rewarming rate. This study adds another layer of computational capabilities to a recent study investigating similar effects during cooling. Results of this study demonstrate that the thermal effects of crystallization on the local cooling and rewarming rates cannot be neglected. It further explains how crystallization during rewarming helps in increasing the rewarming rate and, thereby, affects rewarming-phase crystallization. Counterintuitively, this study suggests that the fastest possible rewarming rate at the outer surface of the domain in an inwards rewarming problem is not always advantageous, while the proposed computational tool is essential to find an intermediate optimal rate.


Assuntos
Crioprotetores , Vitrificação , Criopreservação/métodos , Cristalização , Reaquecimento
8.
Cryobiology ; 102: 34-41, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34331902

RESUMO

Mathematical modeling of surface deformation during cryopreservation by vitrification is presented in this study. The specific problem under consideration is of a cryoprotective agent (CPA) solution vitrifying in a vial, following previously obtained cryomacroscopy observations. A multiphysics solution is proposed in this study, combining coupled effects associated with heat transfer, fluid mechanics, and solid mechanics. Consistent with previous investigations, this study demonstrates that surface deformation is the result of material flow, which is the combined outcome of temperature gradients developed during the inward cooling process, the tendency of the material to change its volume with temperature, and the exponential increase in material viscosity with the decreasing temperature. During this process, the behavior of the CPA changes from liquid to a solid-like amorphous material, where the arrested flow in the vitrified state results in mechanical stresses. Results of this study show a good qualitative agreement of surface deformation with previously obtained experimental data, and support prior investigations to explain fracture tendencies propagating from the deformed surface. Results of this study also highlight the effect of heat convection in the CPA at the early stage of cooling.


Assuntos
Criopreservação , Vitrificação , Temperatura Baixa , Criopreservação/métodos , Crioprotetores , Modelos Teóricos
9.
Cryobiology ; 100: 180-192, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33412158

RESUMO

This study presents a computational framework for thermomechanical stress analysis in a specimen undergoing cryopreservation, with emphasis on radiofrequency (RF) heating for recovering from cryogenic storage. In particular, this study addresses cryopreservation by vitrification, where the specimen is stored in the amorphous phase (vitreous means glassy). In broad terms, the relatively high cooling and rewarming rates necessary for vitrification result in differential thermal expansion in the specimen, which is the driving force for thermomechanical stress. Thermomechanical stress can lead to structural damage, such as fractures or plastic deformation, rendering the specimen useless. Not without technical difficulties, those hazardous effects during the rewarming phase of the protocol can be mitigated by applying volumetric heating, with RF heating as an attractive means. The proposed computational framework in this study addresses the coupled electromagnetic, thermal and solid mechanics fields, using commercially available solvers. This study advances from a spherical-case benchmark to realistic models of the rabbit kidney and the human kidney. Results of this study suggest that structural damage to the brittle material can be prevented when stress relaxation is facilitated around the glass transition temperature. Furthermore, this study suggests that volumetric heating is necessary to surpass the critical rewarming rate, while benefiting from lowering the overall thermomechanical stress during recovery from cryogenic storage. More broadly, the computational framework presented here can be used for the optimization of the RF heating parameters, chamber specifics, specimen container shape, and the thermal protocol in order to preserve structural integrity in the specimen.


Assuntos
Criopreservação , Vitrificação , Animais , Criopreservação/métodos , Crioprotetores , Calefação , Humanos , Rim , Coelhos , Temperatura
10.
PLoS One ; 15(9): e0238941, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32941483

RESUMO

The objective of this study is to provide thermal conductivity data for CPA-based nanofluids for the benefit of the analyses of cryopreservation by vitrification. Thermal conductivity measurements were conducted using a hot-wire technique on an experimentation platform of the cryomacroscope, to correlate measurements with observed physical effects such as crystallization and fracturing. Tested materials in this study include the CPA cocktails M22, VS55, DP6, and DP6+sucrose. Nanofluids in this study include the above CPA cocktails as base solutions, when mixed with either iron-oxide nanoparticles (IONP) or silica-coated iron-oxide nanoparticles (sIONP). Results of this study demonstrated the addition of sIONP to any of the CPA cocktails tested did not significantly affect its thermal conductivity, its tendency to vitrify or, conversely, its tendency to form rewarming phase crystallization (RPC). Fractures were observed with cryomacroscopy at the onset of rewarming for DP6+sIONP under carefully controlled rewarming conditions without RF activation, despite the inherent opacity of the sIONP solutions. It is likely that using RF heating in order to accelerate rewarming while unifying the temperature distribution would prevent fracture and RPC. However, sIONP were not activated in this study, as the RF heating mechanism would interfere with thermal conductivity measurements. The addition of IONP to DP6 appears to hinder the tendency of the CPA to vitrify, which is a detrimental effect. But it is unlikely that uncoated nanoparticle solutions will be used in practical applications.


Assuntos
Criopreservação/métodos , Crioprotetores/química , Cristalização , Nanopartículas , Temperatura , Condutividade Térmica , Preservação de Tecido , Vitrificação
11.
J Appl Mech ; 87(10): 101003, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34168384

RESUMO

Cryopreservation via vitrification (glass formation) is a promising approach for long-term preservation of large-size tissues and organs. Unfortunately, thermomechanical stress, which is driven by the tendency of materials to change size with temperature, may lead to structural failure. This study focuses on analysis of thermomechanical stress in a realistic, pillow-like shape cryobag as it is cooled to cryogenic storage, subject to sufficiently high cooling rates to facilitate vitrification. Contrary to common perception, it is demonstrated in this study that the maximum stress in the specimen does not necessarily increase with increasing size of the specimen. In fact, the maximum stress is affected by the combination of two competing effects, associated with the extent of the temperature gradients within the specimen and its overall volume. On one hand, the increase in specimen size gives rise to more prominent temperature gradients, which can intensify the thermomechanical stress. On the other hand, the temperature distribution at the core of larger specimens is more uniform, which leads to a larger portion of the specimen transitioning from fluid to a glassy material almost instantaneously, which carries a moderating effect on the overall mechanical stress at the glassy state (i.e., lower residual stress). In conclusion, this study demonstrates the role of container shape optimization in reducing the thermomechanical stress during cooling.

12.
Int J Comput Assist Radiol Surg ; 15(2): 225-237, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31606792

RESUMO

OBJECTIVE: Interventional radiology methods have been adopted for intraoperative control of the surgical region of interest (ROI) in a wide range of minimally invasive procedures. One major obstacle that hinders the success of procedures using interventional radiology methods is the preoperative and intraoperative deformation of the ROI. While fiducial markers (FM) tracing has been shown to be promising in tracking such deformations, determining the optimal placement of the FM in the ROI remains a significant challenge. The current study proposes a computational framework to address this problem by preoperatively optimizing the layout of FM, thereby enabling an accurate tracking of the ROI deformations. METHODS: The proposed approach includes three main components: (1) creation of virtual deformation benchmarks, (2) method of predicting intraoperative tissue deformation based on FM registration, and (3) FM layout optimization. To account for the large variety of potential ROI deformations, virtual benchmarks are created by applying a multitude of random force fields on the tumor surface in physically based simulations. The ROI deformation prediction is carried out by solving the inverse problem of finding the smoothest force field that leads to the observed FM displacements. Based on this formulation, a simulated annealing approach is employed to optimize the FM layout that produces the best prediction accuracy. RESULTS: The proposed approach is capable of finding an FM layout that outperforms the rationally chosen layouts by 40% in terms of ROI prediction accuracy. For a maximum induced displacement of 20 mm on the tumor surface, the average maximum error between the benchmarks and our FM-optimized predictions is about 1.72 mm, which falls within the typical resolution of ultrasound imaging. CONCLUSIONS: The proposed framework can optimize FM layout to effectively reduce the errors in the intraoperative deformation prediction process, thus bridging the gap between preoperative imaging and intraoperative tissue deformation.


Assuntos
Imageamento Tridimensional/métodos , Neoplasias/diagnóstico por imagem , Marcadores Fiduciais , Humanos , Ultrassonografia
13.
Cryobiology ; 91: 128-136, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31526802

RESUMO

This study aims at the thermal analysis of marginal conditions leading to cryopreservation by vitrification, which appears to be the only alternative for indefinite preservation of large-size tissues and organs. The term "marginal conditions" here refers to cooling rates in close range with the so-called critical cooling rate, above which crystallization is avoided. The analysis of thermal effects associated with partial crystallization during vitrification is associated with the coupled phenomena of heat transfer and kinetics of crystallization. This study takes a practical, semi-empirical approach, where heat transfer is analyzed based on its underlying theoretical principles, while the thermal effects associated with partial crystallization are taken into account by means of empirical correlations. This study presents a computation framework to solve the coupled problem, while presenting a proof-of-concept for DP6 as a representative cryoprotective agent. The thermal effects associated with crystallization at various relevant cooling rates are measured in this study by means of differential scanning calorimetry. Results of this study demonstrate that, due to the thermal effects associated with partial crystallization, the cooling rate at the center of a large organ may lag behind the cooling rate in its surroundings under some scenarios, but may also exceed the surroundings cooling rate in other scenarios, leading to counter-intuitive effects associated with partial crystallization.


Assuntos
Varredura Diferencial de Calorimetria/métodos , Criopreservação/métodos , Crioprotetores/farmacologia , Análise Diferencial Térmica/métodos , Dimetil Sulfóxido/farmacologia , HEPES/farmacologia , Preservação de Órgãos/métodos , Propilenoglicóis/farmacologia , Temperatura Baixa , Crioprotetores/química , Cristalização , Temperatura Alta , Transição de Fase , Vitrificação
14.
PLoS One ; 13(6): e0199155, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29912973

RESUMO

This study presents experimental results and an analysis approach for polarized light effects associated with thermomechanical stress during cooling of glass promoting solutions, with applications to cryopreservation and tissue banking in a process known as vitrification. Polarized light means have been previously integrated into the cryomacroscope-a visualization device to detect physical effects associated with cryopreservation success, such as crystallization, fracture formation, and contamination. The experimental study concerns vitrification in a cuvette, which is a rectangular container. Polarized light modeling in the cuvette is based on subdividing the tridimensional (3D) domain into a series of planar (2D) problems, for which a mathematical solution is available in the literature. The current analysis is based on tracking the accumulated changes in light polarization and magnitude, as it passes through the sequence of planar problems. Results of this study show qualitative agreement in light intensity history and distribution between experimental data and simulated results. The simulated results help explaining differences between 2D and 3D effects in photoelasticity, most notably, the counterintuitive observation that high stress areas may correlate with low light intensity regions based on the particular experimental conditions. Finally, it is suggested that polarized-light analysis must always be accompanied by thermomechanical stress modeling in order to explain 3D effects.


Assuntos
Criopreservação/métodos , Bancos de Tecidos , Criopreservação/instrumentação , Humanos , Luz , Vitrificação/efeitos da radiação
15.
Technol Cancer Res Treat ; 17: 1533034618766792, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29658392

RESUMO

Interstitial photodynamic therapy has shown promising results in the treatment of locally advanced head and neck cancer. In this therapy, systemic administration of a light-sensitive drug is followed by insertion of multiple laser fibers to illuminate the tumor and its margins. Image-based pretreatment planning is employed in order to deliver a sufficient light dose to the complex locally advanced head-and-neck cancer anatomy, in order to meet clinical requirements. Unfortunately, the tumor may deform between pretreatment imaging for the purpose of planning and intraoperative imaging when the plan is executed. Tumor deformation may result from the mechanical forces applied by the light fibers and variation of the patient's posture. Pretreatment planning is frequently done with the assistance of computed tomography or magnetic resonance imaging in an outpatient suite, while treatment monitoring and control typically uses ultrasound imaging due to considerations of costs and availability in the operation room. This article presents a computational method designed to bridge the gap between the 2 imaging events by taking a tumor geometry, reconstructed during preplanning, and by following the displacement of fiducial markers, which are initially placed during the preplanning procedure. The deformed tumor shape is predicted by solving an inverse problem, seeking for the forces that would have resulted in the corresponding fiducial marker displacements. The computational method is studied on spheres of variable sizes and demonstrated on computed tomography reconstructed locally advanced head and neck cancer model. Results of this study demonstrate an average error of less than 1 mm in predicting the deformed tumor shape, where 1 mm is typically the order of uncertainty in distance measurements using magnetic resonance imaging or computed tomography imaging and high-quality ultrasound imaging. This study further demonstrates that the deformed shape can be calculated in a few seconds, making the proposed method clinically relevant.


Assuntos
Marcadores Fiduciais , Modelos Anatômicos , Neoplasias/diagnóstico por imagem , Algoritmos , Simulação por Computador , Diagnóstico por Imagem , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Neoplasias/patologia , Neoplasias/terapia , Fotoquimioterapia , Reprodutibilidade dos Testes
16.
Cryobiology ; 82: 70-77, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29660316

RESUMO

Vitrification tendency and stability of the amorphous state were analyzed by means of differential scanning calorimetry (DSC) for the vitrification solution DP6, with and without additional solutes to enhance ice suppression. This study is a part of an ongoing research effort to characterize the thermophysical and mechanical properties of DP6 and its derivatives, and their qualities as cryoprotective solutions. DP6 was determined to have a critical cooling rate necessary to ensure vitrification of 2.7 °C/min. The following additional solutions were tested: DP6 + 6% (2R, 3R) 2,3-butanediol, DP6 + 6% 1,3-cyclohexanediol, DP6 + 6% (0.175M) sucrose, DP6 + 12% PEG 400, and DP6 + 17.1% (0.5 M) sucrose. The additives decreased the critical cooling rate of the DP6 solution to rates below 1 °C/min that were not quantifiable by the DSC techniques used. The following critical warming rates necessary to avoid devitrification were identified for DP6 and the modified solutions, respectively: 189 °C/min, 5 °C/min, ≈ 1 °C/min, 15 °C/min, <1 °C/min, and <1 °C/min. Glass transition temperatures and melting temperatures were also measured. Sucrose was the least effective additive on a per mass basis, with 1,3-cyclohexanediol appearing to be the most effective additive for suppressing ice formation in DP6.


Assuntos
Butileno Glicóis/química , Criopreservação/métodos , Crioprotetores/química , Cicloexanóis/química , Dimetil Sulfóxido/química , HEPES/química , Polietilenoglicóis/química , Propilenoglicóis/química , Sacarose/química , Vitrificação , Animais , Varredura Diferencial de Calorimetria , Temperatura Baixa , Transição de Fase , Temperatura de Transição
17.
Technol Cancer Res Treat ; 17: 1533033818762207, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29566612

RESUMO

BACKGROUND: Diverse thermal ablative therapies are currently in use for the treatment of cancer. Commonly applied with the intent to cure, these ablative therapies are providing promising success rates similar to and often exceeding "gold standard" approaches. Cancer-curing prospects may be enhanced by deeper understanding of thermal effects on cancer cells and the hosting tissue, including the molecular mechanisms of cancer cell mutations, which enable resistance to therapy. Furthermore, thermal ablative therapies may benefit from recent developments in computer hardware and computation tools for planning, monitoring, visualization, and education. METHODS: Recent discoveries in cancer cell resistance to destruction by apoptosis, autophagy, and necrosis are now providing an understanding of the strategies used by cancer cells to avoid destruction by immunologic surveillance. Further, these discoveries are now providing insight into the success of the diverse types of ablative therapies utilized in the clinical arena today and into how they directly and indirectly overcome many of the cancers' defensive strategies. Additionally, the manner in which minimally invasive thermal therapy is enabled by imaging, which facilitates anatomical features reconstruction, insertion guidance of thermal probes, and strategic placement of thermal sensors, plays a critical role in the delivery of effective ablative treatment. RESULTS: The thermal techniques discussed include radiofrequency, microwave, high-intensity focused ultrasound, laser, and cryosurgery. Also discussed is the development of thermal adjunctive therapies-the combination of drug and thermal treatments-which provide new and more effective combinatorial physical and molecular-based approaches for treating various cancers. Finally, advanced computational and planning tools are also discussed. CONCLUSION: This review lays out the various molecular adaptive mechanisms-the hallmarks of cancer-responsible for therapeutic resistance, on one hand, and how various ablative therapies, including both heating- and freezing-based strategies, overcome many of cancer's defenses, on the other hand, thereby enhancing the potential for curative approaches for various cancers.


Assuntos
Criocirurgia/métodos , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Terapia a Laser/métodos , Neoplasias/cirurgia , Ablação por Radiofrequência/métodos , Adaptação Fisiológica/fisiologia , Adaptação Fisiológica/efeitos da radiação , Simulação por Computador , Resistencia a Medicamentos Antineoplásicos/fisiologia , Resistencia a Medicamentos Antineoplásicos/efeitos da radiação , Humanos
18.
Int J Comput Assist Radiol Surg ; 13(4): 541-549, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29396685

RESUMO

PURPOSE: This study aims at the evaluation of a prototype of a computerized trainer for cryosurgery-the controlled destruction of cancer tumors by freezing. The hypothesis in this study is that computer-based cryosurgery training for an optimal cryoprobe layout is essentially a matter of exposure time, rather than trainee background or the specific computer-generated planning target. Key geometric features under considerations are associated with spatial limitations on cryoprobes placement and the match between the resulted thermal field and the unique anatomy of the prostate. METHODS: All experiments in this study were performed on the cryosurgery trainer-a prototype platform for computerized cryosurgery training, which has been presented previously. Among its key features, the cryosurgery trainer displays the prostate shape and its contours and provides a distance measurement tool on demand, in order to address spatial constraints during ultrasound imaging guidance. Another unique feature of the cryosurgery trainer is an output movie, displaying the simulated thermal field at the end of the cryoprocedure. RESULTS: The current study was performed on graduate engineering students having no formal background in medicine, and the results were benchmarked against data obtained on surgical residents having no experience with cryosurgery. Despite fundamental differences in background and experience, neither group displayed superior performance when it comes to cryoprobe layout planning. CONCLUSIONS: This study demonstrates that computer-based training of an optimal cryoprobe layout is feasible. This study demonstrates that the training quality is essentially related to the training exposure time, rather than to a specific planning strategy from those investigated.


Assuntos
Simulação por Computador , Criocirurgia/educação , Engenharia/educação , Próstata/diagnóstico por imagem , Cirurgia Assistida por Computador/educação , Ultrassonografia/métodos , Urologia/educação , Humanos , Internato e Residência , Masculino , Microcirurgia/educação , Modelos Teóricos , Próstata/cirurgia
19.
J Biomech Eng ; 140(1)2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28753690

RESUMO

This study focuses on thermal analysis of the problem of scaling up from the vitrification of rabbit kidneys to the vitrification of human kidneys, where vitrification is the preservation of biological material in the glassy state. The basis for this study is a successful cryopreservation protocol for a rabbit kidney model, based on using a proprietary vitrification solution known as M22. Using the finite element analysis (FEA) commercial code ANSYS, heat transfer simulations suggest that indeed the rabbit kidney unquestionably cools rapidly enough to be vitrified based on known intrarenal concentrations of M22. Scaling up 21-fold, computer simulations suggest less favorable conditions for human kidney vitrification. In this case, cooling rates below -100 °C are sometimes slower than 1 °C/min, a rate that provides a clear-cut margin of safety at all temperatures based on the stability of rabbit kidneys in past studies. Nevertheless, it is concluded in this study that vitrifying human kidneys is possible without significant ice damage, assuming that human kidneys can be perfused with M22 as effectively as rabbit kidneys. The thermal analysis suggests that cooling rates can be further increased by a careful design of the cryogenic protocol and by tailoring the container to the shape of the kidney, in contrast to the present cylindrical container. This study demonstrates the critical need for the thermal analysis of experimental cryopreservation and highlights the unmet need for measuring the thermophysical properties of cryoprotective solutions under conditions relevant to realistic thermal histories.


Assuntos
Criopreservação , Rim , Temperatura , Vitrificação , Animais , Análise de Elementos Finitos , Humanos , Coelhos
20.
Proc SPIE Int Soc Opt Eng ; 100662017 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-28717259

RESUMO

This paper focuses on the evaluation of a prototype for a computer-based tutoring system for prostate cryosurgery, while reviewing its key building blocks and their benchmark performance. The tutoring system lists geometrical constraints of cryoprobe placement, displays a rendered shape of the prostate, simulates cryoprobe insertion, enables distance measurements, simulates the corresponding thermal history, and evaluates the mismatch between the target region shape and a pre-selected planning isotherm. The quality of trainee planning is measured in comparison with a computer-generated plan, created for each case study by a previously developed planning algorithm, known as bubble-packing. While the tutoring level in this study aims only at geometrical constraints on cryoprobe placement and the resulting thermal history, it creates a unique opportunity to gain insight into the process outside of the operation room. System validation of the tutor has been performed by collecting training data from surgical residents, having no prior experience or advanced knowledge of cryotherapy. Furthermore, the system has been evaluated by graduate engineering students having no formal education in medicine. In terms of match between a planning isotherm and the target region shape, results demonstrate medical residents' performance improved from 4.4% in a pretest to 37.8% in a posttest over a course of 50 minutes of training (within 10% margins from a computer-optimized plan). Comparing those results with the performance of engineering students indicates similar results, suggesting that planning of the cryoprobe layout essentially revolves around geometric considerations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...