Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eye Contact Lens ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477795

RESUMO

ABSTRACT: Corneal abrasions are among the most common ophthalmic injuries in the emergency department (ED) and primarily present as severe ocular pain. Topical anesthetics provide temporary analgesia, but overuse is associated with complications including further corneal injury, infection, and vision loss. This case series describes three patients who used a 15-mL bottle of 0.05% proparacaine hydrochloride ophthalmic solution after discharge from the ED and returned within three days with corneal injury and pain. Although the use of topical anesthetics is traditionally discouraged by ophthalmologists, publications in the emergency medicine literature support their use. We review the literature surrounding topical anesthetic use in the ED setting and caution against prescribing patients topical anesthetics for corneal abrasions, particularly without patient counseling and significant restriction of anesthetic supply.

2.
Cancer Res ; 83(24): 4142-4160, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37801613

RESUMO

Prostate cancer remains the second leading cause of cancer death in men in Western cultures. A deeper understanding of the mechanisms by which prostate cancer cells divide to support tumor growth could help devise strategies to overcome treatment resistance and improve survival. Here, we identified that the mitotic AGC family protein kinase citron kinase (CIT) is a pivotal regulator of prostate cancer growth that mediates prostate cancer cell interphase progression. Increased CIT expression correlated with prostate cancer growth induction and aggressive prostate cancer progression, and CIT was overexpressed in prostate cancer compared with benign prostate tissue. CIT overexpression was controlled by an E2F2-Skp2-p27 signaling axis and conferred resistance to androgen-targeted treatment strategies. The effects of CIT relied entirely on its kinase activity. Conversely, CIT silencing inhibited the growth of cell lines and xenografts representing different stages of prostate cancer progression and treatment resistance but did not affect benign epithelial prostate cells or nonprostatic normal cells, indicating a potential therapeutic window for CIT inhibition. CIT kinase activity was identified as druggable and was potently inhibited by the multikinase inhibitor OTS-167, which decreased the proliferation of treatment-resistant prostate cancer cells and patient-derived organoids. Isolation of the in vivo CIT substrates identified proteins involved in diverse cellular functions ranging from proliferation to alternative splicing events that are enriched in treatment-resistant prostate cancer. These findings provide insights into the regulation of aggressive prostate cancer cell behavior by CIT and identify CIT as a functionally diverse and druggable driver of prostate cancer progression. SIGNIFICANCE: The poorly characterized protein kinase citron kinase is a therapeutic target in prostate cancer that drives tumor growth by regulating diverse substrates, which control several hallmarks of aggressive prostate cancer progression. See related commentary by Mishra et al., p. 4008.


Assuntos
Próstata , Neoplasias da Próstata , Proteínas Quinases , Humanos , Masculino , Linhagem Celular Tumoral , Proliferação de Células , Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais
3.
JCI Insight ; 8(13)2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37252795

RESUMO

Intratumoral heterogeneity is a defining hallmark of glioblastoma, driving drug resistance and ultimately recurrence. Many somatic drivers of microenvironmental change have been shown to affect this heterogeneity and, ultimately, the treatment response. However, little is known about how germline mutations affect the tumoral microenvironment. Here, we find that the single-nucleotide polymorphism (SNP) rs755622 in the promoter of the cytokine macrophage migration inhibitory factor (MIF) is associated with increased leukocyte infiltration in glioblastoma. Furthermore, we identified an association between rs755622 and lactotransferrin expression, which could also be used as a biomarker for immune-infiltrated tumors. These findings demonstrate that a germline SNP in the promoter region of MIF may affect the immune microenvironment and further reveal a link between lactotransferrin and immune activation.


Assuntos
Glioblastoma , Fatores Inibidores da Migração de Macrófagos , Humanos , Lactoferrina/genética , Fatores Inibidores da Migração de Macrófagos/genética , Polimorfismo de Nucleotídeo Único , Glioblastoma/genética , Regiões Promotoras Genéticas , Microambiente Tumoral/genética , Oxirredutases Intramoleculares/genética
4.
Clin Cancer Res ; 27(7): 2038-2049, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33542075

RESUMO

PURPOSE: Glioblastoma (GBM) immunotherapy clinical trials are generally initiated after standard-of-care treatment-including surgical resection, perioperative high-dose steroid therapy, chemotherapy, and radiation treatment-has either begun or failed. However, the impact of these interventions on the antitumoral immune response is not well studied. While discoveries regarding the impact of chemotherapy and radiation on immune response have been made and translated into clinical trial design, the impact of surgical resection and steroids on the antitumor immune response has yet to be determined. EXPERIMENTAL DESIGN: We developed a murine model integrating tumor resection and steroid treatment and used flow cytometry to analyze systemic and local immune changes. These mouse model findings were validated in a cohort of 95 patients with primary GBM. RESULTS: Using our murine resection model, we observed a systemic reduction in lymphocytes corresponding to increased tumor volume and decreased circulating lymphocytes that was masked by dexamethasone treatment. The reduction in circulating T cells was due to reduced CCR7 expression, resulting in T-cell sequestration in lymphoid organs and the bone marrow. We confirmed these findings in a cohort of patients with primary GBM and found that prior to steroid treatment, circulating lymphocytes inversely correlated with tumor volume. Finally, we demonstrated that peripheral lymphocyte content varies with progression-free survival and overall survival, independent of tumor volume, steroid use, or molecular profiles. CONCLUSIONS: These data reveal that prior to intervention, increased tumor volume corresponds with reduced systemic immune function and that peripheral lymphocyte counts are prognostic when steroid treatment is taken into account.


Assuntos
Neoplasias Encefálicas/imunologia , Glioblastoma/imunologia , Idoso , Animais , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Dexametasona/uso terapêutico , Modelos Animais de Doenças , Feminino , Glioblastoma/mortalidade , Glioblastoma/patologia , Glioblastoma/terapia , Humanos , Tolerância Imunológica , Imunofenotipagem , Contagem de Linfócitos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Carga Tumoral
5.
Front Immunol ; 11: 1191, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32625208

RESUMO

The application of tumor immunotherapy to glioblastoma (GBM) is limited by an unprecedented degree of immune suppression due to factors that include high numbers of immune suppressive myeloid cells, the blood brain barrier, and T cell sequestration to the bone marrow. We previously identified an increase in immune suppressive myeloid-derived suppressor cells (MDSCs) in GBM patients, which correlated with poor prognosis and was dependent on macrophage migration inhibitory factor (MIF). Here we examine the MIF signaling axis in detail in murine MDSC models, GBM-educated MDSCs and human GBM. We found that the monocytic subset of MDSCs (M-MDSCs) expressed high levels of the MIF cognate receptor CD74 and was localized in the tumor microenvironment. In contrast, granulocytic MDSCs (G-MDSCs) expressed high levels of the MIF non-cognate receptor CXCR2 and showed minimal accumulation in the tumor microenvironment. Furthermore, targeting M-MDSCs with Ibudilast, a brain penetrant MIF-CD74 interaction inhibitor, reduced MDSC function and enhanced CD8 T cell activity in the tumor microenvironment. These findings demonstrate the MDSC subsets differentially express MIF receptors and may be leveraged for specific MDSC targeting.


Assuntos
Neoplasias Encefálicas/imunologia , Glioblastoma/imunologia , Células Supressoras Mieloides/imunologia , Receptores Imunológicos/imunologia , Evasão Tumoral/imunologia , Animais , Humanos , Imunoterapia/métodos , Fatores Inibidores da Migração de Macrófagos/imunologia , Fatores Inibidores da Migração de Macrófagos/metabolismo , Camundongos , Piridinas/farmacologia , Receptores Imunológicos/metabolismo , Evasão Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...