Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 225(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35288729

RESUMO

Muscle is highly hierarchically organized, with functions shaped by genetically controlled expression of protein ensembles with different isoform profiles at the sarcomere scale. However, it remains unclear how isoform profiles shape whole-muscle performance. We compared two mouse hindlimb muscles, the slow, relatively parallel-fibered soleus and the faster, more pennate-fibered tibialis anterior (TA), across scales: from gene regulation, isoform expression and translation speed, to force-length-velocity-power for intact muscles. Expression of myosin heavy-chain (MHC) isoforms directly corresponded with contraction velocity. The fast-twitch TA with fast MHC isoforms had faster unloaded velocities (actin sliding velocity, Vactin; peak fiber velocity, Vmax) than the slow-twitch soleus. For the soleus, Vactin was biased towards Vactin for purely slow MHC I, despite this muscle's even fast and slow MHC isoform composition. Our multi-scale results clearly identified a consistent and significant dampening in fiber shortening velocities for both muscles, underscoring an indirect correlation between Vactin and fiber Vmax that may be influenced by differences in fiber architecture, along with internal loading due to both passive and active effects. These influences correlate with the increased peak force and power in the slightly more pennate TA, leading to a broader length range of near-optimal force production. Conversely, a greater force-velocity curvature in the near-parallel fibered soleus highlights the fine-tuning by molecular-scale influences including myosin heavy and light chain expression along with whole-muscle characteristics. Our results demonstrate that the individual gene, protein and whole-fiber characteristics do not directly reflect overall muscle performance but that intricate fine-tuning across scales shapes specialized muscle function.


Assuntos
Músculo Esquelético , Cadeias Pesadas de Miosina , Animais , Camundongos , Contração Muscular/fisiologia , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/fisiologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosinas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sarcômeros/metabolismo
2.
J Gen Physiol ; 153(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34319370

RESUMO

Hypertrophic cardiomyopathy (HCM) is an inherited disorder caused primarily by mutations to thick and thinfilament proteins. Although thin filament mutations are less prevalent than their oft-studied thick filament counterparts, they are frequently associated with severe patient phenotypes and can offer important insight into fundamental disease mechanisms. We have performed a detailed study of tropomyosin (TPM1) E192K, a variant of uncertain significance associated with HCM. Molecular dynamics revealed that E192K results in a more flexible TPM1 molecule, which could affect its ability to regulate crossbridges. In vitro motility assays of regulated actin filaments containing TPM1 E192K showed an overall loss of Ca2+ sensitivity. To understand these effects, we used multiscale computational models that suggested a subtle phenotype in which E192K leads to an inability to completely inhibit actin-myosin crossbridge activity at low Ca2+. To assess the physiological impact of the mutation, we generated patient-derived engineered heart tissues expressing E192K. These tissues showed disease features similar to those of the patients, including cellular hypertrophy, hypercontractility, and diastolic dysfunction. We hypothesized that excess residual crossbridge activity could be triggering cellular hypertrophy, even if the overall Ca2+ sensitivity was reduced by E192K. To test this hypothesis, the cardiac myosin-specific inhibitor mavacamten was applied to patient-derived engineered heart tissues for 4 d followed by 24 h of washout. Chronic mavacamten treatment abolished contractile differences between control and TPM1 E192K engineered heart tissues and reversed hypertrophy in cardiomyocytes. These results suggest that the TPM1 E192K mutation triggers cardiomyocyte hypertrophy by permitting excess residual crossbridge activity. These studies also provide direct evidence that myosin inhibition by mavacamten can counteract the hypertrophic effects of mutant tropomyosin.


Assuntos
Miosinas , Tropomiosina , Miosinas Cardíacas , Cardiomegalia/genética , Humanos , Mutação , Tropomiosina/genética
3.
Cardiovasc Res ; 116(2): 368-382, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31049579

RESUMO

AIMS: Heart failure invariably affects patients with various forms of muscular dystrophy (MD), but the onset and molecular sequelae of altered structure and function resulting from full-length dystrophin (Dp427) deficiency in MD heart tissue are poorly understood. To better understand the role of dystrophin in cardiomyocyte development and the earliest phase of Duchenne muscular dystrophy (DMD) cardiomyopathy, we studied human cardiomyocytes differentiated from induced pluripotent stem cells (hiPSC-CMs) obtained from the urine of a DMD patient. METHODS AND RESULTS: The contractile properties of patient-specific hiPSC-CMs, with no detectable dystrophin (DMD-CMs with a deletion of exon 50), were compared to CMs containing a CRISPR-Cas9 mediated deletion of a single G base at position 263 of the dystrophin gene (c.263delG-CMs) isogenic to the parental line of hiPSC-CMs from a healthy individual. We hypothesized that the absence of a dystrophin-actin linkage would adversely affect myofibril and cardiomyocyte structure and function. Cardiomyocyte maturation was driven by culturing long-term (80-100 days) on a nanopatterned surface, which resulted in hiPSC-CMs with adult-like dimensions and aligned myofibrils. CONCLUSIONS: Our data demonstrate that lack of Dp427 results in reduced myofibril contractile tension, slower relaxation kinetics, and to Ca2+ handling abnormalities, similar to DMD cells, suggesting either retarded or altered maturation of cardiomyocyte structures associated with these functions. This study offers new insights into the functional consequences of Dp427 deficiency at an early stage of cardiomyocyte development in both patient-derived and CRISPR-generated models of dystrophin deficiency.


Assuntos
Cardiomiopatias/etiologia , Diferenciação Celular , Distrofina/deficiência , Células-Tronco Pluripotentes Induzidas/metabolismo , Distrofia Muscular de Duchenne/complicações , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Miofibrilas/metabolismo , Sinalização do Cálcio , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Cardiomiopatias/fisiopatologia , Estudos de Casos e Controles , Linhagem Celular , Distrofina/genética , Humanos , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Cinética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Miócitos Cardíacos/ultraestrutura , Miofibrilas/ultraestrutura
4.
Stem Cell Reports ; 6(6): 885-896, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27161364

RESUMO

Tension production and contractile properties are poorly characterized aspects of excitation-contraction coupling of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Previous approaches have been limited due to the small size and structural immaturity of early-stage hiPSC-CMs. We developed a substrate nanopatterning approach to produce hiPSC-CMs in culture with adult-like dimensions, T-tubule-like structures, and aligned myofibrils. We then isolated myofibrils from hiPSC-CMs and measured the tension and kinetics of activation and relaxation using a custom-built apparatus with fast solution switching. The contractile properties and ultrastructure of myofibrils more closely resembled human fetal myofibrils of similar gestational age than adult preparations. We also demonstrated the ability to study the development of contractile dysfunction of myofibrils from a patient-derived hiPSC-CM cell line carrying the familial cardiomyopathy MYH7 mutation (E848G). These methods can bring new insights to understanding cardiomyocyte maturation and developmental mechanical dysfunction of hiPSC-CMs with cardiomyopathic mutations.


Assuntos
Acoplamento Excitação-Contração/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/fisiologia , Miofibrilas/fisiologia , Fenômenos Biomecânicos , Miosinas Cardíacas/genética , Cardiomiopatias/genética , Cardiomiopatias/fisiopatologia , Diferenciação Celular , Linhagem Celular , Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Cinética , Mutação , Miócitos Cardíacos/citologia , Miofibrilas/ultraestrutura , Cadeias Pesadas de Miosina/genética , Nanoestruturas/química , Cultura Primária de Células
5.
J Physiol ; 594(2): 437-52, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26460603

RESUMO

KEY POINTS: The contractile properties of human fetal cardiac muscle have not been previously studied. Small-scale approaches such as isolated myofibril and isolated contractile protein biomechanical assays allow study of activation and relaxation kinetics of human fetal cardiac muscle under well-controlled conditions. We have examined the contractile properties of human fetal cardiac myofibrils and myosin across gestational age 59-134 days. Human fetal cardiac myofibrils have low force and slow kinetics of activation and relaxation that increase during the time period studied, and kinetic changes may result from structural maturation and changes in protein isoform expression. Understanding the time course of human fetal cardiac muscle structure and contractile maturation can provide a framework to study development of contractile dysfunction with disease and evaluate the maturation state of cultured stem cell-derived cardiomyocytes. ABSTRACT: Little is known about the contractile properties of human fetal cardiac muscle during development. Understanding these contractile properties, and how they change throughout development, can provide valuable insight into human heart development, and provide a framework to study the early stages of cardiac diseases that develop in utero. We characterized the contractile properties of isolated human fetal cardiac myofibrils across 8-19 weeks of gestation. Mechanical measurements revealed that in early stages of gestation there is low specific force and slow rates of force development and relaxation, with increases in force and the rates of activation and relaxation as gestation progresses. The duration and slope of the initial, slow phase of relaxation, related to myosin detachment and thin filament deactivation rates, decreased with gestation age. F-actin sliding on human fetal cardiac myosin-coated surfaces slowed significantly from 108 to 130 days of gestation. Electron micrographs showed human fetal muscle myofibrils elongate and widen with age, but features such as the M-line and Z-band are apparent even as early as day 52. Protein isoform analysis revealed that ß-myosin is predominantly expressed even at the earliest time point studied, but there is a progressive increase in expression of cardiac troponin I (TnI), with a concurrent decrease in slow skeletal TnI. Together, our results suggest that cardiac myofibril force production and kinetics of activation and relaxation change significantly with gestation age and are influenced by the structural maturation of the sarcomere and changes in contractile filament protein isoforms.


Assuntos
Coração Fetal/fisiologia , Contração Miocárdica , Miofibrilas/fisiologia , Actinas/genética , Actinas/metabolismo , Adulto , Feminino , Coração Fetal/embriologia , Humanos , Masculino , Miofibrilas/metabolismo , Miofibrilas/ultraestrutura , Miosinas/genética , Miosinas/metabolismo , Troponina I/genética , Troponina I/metabolismo
6.
Hum Mol Genet ; 24(12): 3348-58, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25740846

RESUMO

Distal arthrogryposis is the most common known heritable cause of congenital contractures (e.g. clubfoot) and results from mutations in genes that encode proteins of the contractile complex of skeletal muscle cells. Mutations are most frequently found in MYH3 and are predicted to impair the function of embryonic myosin. We measured the contractile properties of individual skeletal muscle cells and the activation and relaxation kinetics of isolated myofibrils from two adult individuals with an R672C substitution in embryonic myosin and distal arthrogryposis syndrome 2A (DA2A) or Freeman-Sheldon syndrome. In R672C-containing muscle cells, we observed reduced specific force, a prolonged time to relaxation and incomplete relaxation (elevated residual force). In R672C-containing muscle myofibrils, the initial, slower phase of relaxation had a longer duration and slower rate, and time to complete relaxation was greatly prolonged. These observations can be collectively explained by a small subpopulation of myosin cross-bridges with greatly reduced detachment kinetics, resulting in a slower and less complete deactivation of thin filaments at the end of contractions. These findings have important implications for selecting and testing directed therapeutic options for persons with DA2A and perhaps congenital contractures in general.


Assuntos
Disostose Craniofacial/genética , Disostose Craniofacial/fisiopatologia , Contração Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Mutação , Miosinas/genética , Adolescente , Adulto , Cálcio/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Disostose Craniofacial/patologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Feminino , Expressão Gênica , Humanos , Masculino , Músculo Esquelético/patologia , Miofibrilas/genética , Miofibrilas/metabolismo , Miosinas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Adulto Jovem
7.
J Mol Cell Cardiol ; 79: 256-63, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25498214

RESUMO

We are developing a novel treatment for heart failure by increasing myocardial 2 deoxy-ATP (dATP). Our studies in rodent models have shown that substitution of dATP for adenosine triphosphate (ATP) as the energy substrate in vitro or elevation of dATP in vivo increases myocardial contraction and that small increases in the native dATP pool of heart muscle are sufficient to improve cardiac function. Here we report, for the first time, the effect of dATP on human adult cardiac muscle contraction. We measured the contractile properties of chemically-demembranated multicellular ventricular wall preparations and isolated myofibrils from human subjects with end-stage heart failure. Isometric force was increased at both saturating and physiologic Ca(2+) concentrations with dATP compared to ATP. This resulted in an increase in the Ca(2+) sensitivity of force (pCa50) by 0.06 pCa units. The rate of force redevelopment (ktr) in demembranated wall muscle was also increased, as was the rate of contractile activation (kACT) in isolated myofibrils, indicating increased cross-bridge binding and cycling compared with ATP in failing human myocardium. These data suggest that dATP could increase dP/dT and end systolic pressure in failing human myocardium. Importantly, even though the magnitude and rate of force development were increased, there was no increase in the time to 50% and 90% myofibril relaxation. These data, along with our previous studies in rodent models, show the promise of elevating myocardial dATP to enhance contraction and restore cardiac pump function. These data also support further pre-clinical evaluation of this new approach for treating heart failure.


Assuntos
Nucleotídeos de Desoxiadenina/farmacologia , Insuficiência Cardíaca/fisiopatologia , Contração Miocárdica/efeitos dos fármacos , Adulto , Demografia , Feminino , Humanos , Contração Isométrica/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Miofibrilas/metabolismo , Nucleosídeo-Trifosfatase/metabolismo , Vasodilatação/efeitos dos fármacos
8.
J Physiol ; 591(12): 3049-61, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23629510

RESUMO

Little is known about the contraction and relaxation properties of fetal skeletal muscle, and measurements thus far have been made with non-human mammalian muscle. Data on human fetal skeletal muscle contraction are lacking, and there are no published reports on the kinetics of either fetal or adult human skeletal muscle myofibrils. Understanding the contractile properties of human fetal muscle would be valuable in understanding muscle development and a variety of muscle diseases that are associated with mutations in fetal muscle sarcomere proteins. Therefore, we characterised the contractile properties of developing human fetal skeletal muscle and compared them to adult human skeletal muscle and rabbit psoas muscle. Electron micrographs showed human fetal muscle sarcomeres are not fully formed but myofibril formation is visible. Isolated myofibril mechanical measurements revealed much lower specific force, and slower rates of isometric force development, slow phase relaxation, and fast phase relaxation in human fetal when compared to human adult skeletal muscle. The duration of slow phase relaxation was also significantly longer compared to both adult groups, but was similarly affected by elevated ADP. F-actin sliding on human fetal skeletal myosin coated surfaces in in vitro motility (IVM) assays was much slower compared with adult rabbit skeletal myosin, though the Km(app) (apparent (fitted) Michaelis-Menten constant) of F-actin speed with ATP titration suggests a greater affinity of human fetal myosin for nucleotide binding. Replacing ATP with 2 deoxy-ATP (dATP) increased F-actin speed for both groups by a similar amount. Titrations of ADP into IVM assays produced a similar inhibitory affect for both groups, suggesting ADP binding may be similar, at least under low load. Together, our results suggest slower but similar mechanisms of myosin chemomechanical transduction for human fetal muscle that may also be limited by immature myofilament structure.


Assuntos
Feto/fisiologia , Contração Isométrica , Músculo Esquelético/embriologia , Músculo Esquelético/fisiologia , Actinas/metabolismo , Difosfato de Adenosina/metabolismo , Adulto , Animais , Proteínas do Citoesqueleto/metabolismo , Desenvolvimento Fetal , Feto/ultraestrutura , Humanos , Cinética , Relaxamento Muscular , Músculo Esquelético/ultraestrutura , Miosinas/metabolismo , Coelhos , Sarcômeros/metabolismo , Sarcômeros/fisiologia , Sarcômeros/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...