Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Gen Virol ; 98(3): 357-363, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27983470

RESUMO

Deletion or truncation of NS1, the principal IFN antagonist of influenza viruses, leads to increased IFN induction during influenza virus infection. We have studied activation of the IFN induction cascade by both wild-type and NS1-defective viruses at the single-cell level using a cell line expressing GFP under the control of the IFN-ß promoter and by examining MxA expression. The IFN-ß promoter was not activated in all infected cells even during NS1-defective virus infections. Loss of NS1 expression is therefore insufficient per se to induce IFN in an infected cell, and factors besides NS1 expression status must dictate whether the IFN response is activated. The IFN response was efficiently stimulated in these cells following infection with other viruses; the differential IFN response we observe with influenza viruses is therefore not cell specific but is likely due to differences in the nature of the infecting virus particles and their subsequent replication.


Assuntos
Vírus da Influenza A/fisiologia , Influenza Humana/imunologia , Influenza Humana/virologia , Interferon beta/genética , Regiões Promotoras Genéticas , Ativação Transcricional , Proteínas não Estruturais Virais/metabolismo , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Humanos , Vírus da Influenza A/genética , Influenza Humana/genética , Proteínas de Resistência a Myxovirus/genética , Análise de Célula Única , Proteínas não Estruturais Virais/genética , Internalização do Vírus , Replicação Viral
2.
J Virol ; 90(20): 9446-56, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27512068

RESUMO

UNLABELLED: We have previously shown that IFIT1 is primarily responsible for the antiviral action of interferon (IFN) alpha/beta against parainfluenza virus type 5 (PIV5), selectively inhibiting the translation of PIV5 mRNAs. Here we report that while PIV2, PIV5, and mumps virus (MuV) are sensitive to IFIT1, nonrubulavirus members of the paramyxoviridae such as PIV3, Sendai virus (SeV), and canine distemper virus (CDV) are resistant. The IFIT1 sensitivity of PIV5 was not rescued by coinfection with an IFIT1-resistant virus (PIV3), demonstrating that PIV3 does not specifically inhibit the antiviral activity of IFIT1 and that the inhibition of PIV5 mRNAs is regulated by cis-acting elements. We developed an in vitro translation system using purified human IFIT1 to further investigate the mechanism of action of IFIT1. While the translations of PIV2, PIV5, and MuV mRNAs were directly inhibited by IFIT1, the translations of PIV3, SeV, and CDV mRNAs were not. Using purified human mRNA-capping enzymes, we show biochemically that efficient inhibition by IFIT1 is dependent upon a 5' guanosine nucleoside cap (which need not be N7 methylated) and that this sensitivity is partly abrogated by 2'O methylation of the cap 1 ribose. Intriguingly, PIV5 M mRNA, in contrast to NP mRNA, remained sensitive to inhibition by IFIT1 following in vitro 2'O methylation, suggesting that other structural features of mRNAs may influence their sensitivity to IFIT1. Thus, surprisingly, the viral polymerases (which have 2'-O-methyltransferase activity) of rubulaviruses do not protect these viruses from inhibition by IFIT1. Possible biological consequences of this are discussed. IMPORTANCE: Paramyxoviruses cause a wide variety of diseases, and yet most of their genes encode structural proteins and proteins involved in their replication cycle. Thus, the amount of genetic information that determines the type of disease that paramyxoviruses cause is relatively small. One factor that will influence disease outcomes is how they interact with innate host cell defenses, including the interferon (IFN) system. Here we show that different paramyxoviruses interact in distinct ways with cells in a preexisting IFN-induced antiviral state. Strikingly, all the rubulaviruses tested were sensitive to the antiviral action of ISG56/IFIT1, while all the other paramyxoviruses tested were resistant. We developed novel in vitro biochemical assays to investigate the mechanism of action of IFIT1, demonstrating that the mRNAs of rubulaviruses can be directly inhibited by IFIT1 and that this is at least partially because their mRNAs are not correctly methylated.


Assuntos
Proteínas de Transporte/farmacologia , Paramyxoviridae/genética , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , Rubulavirus/genética , Células A549 , Proteínas Adaptadoras de Transdução de Sinal , Linhagem Celular Tumoral , Humanos , Interferon-alfa/metabolismo , Metilação , Vírus da Caxumba/genética , Vírus da Parainfluenza 5/genética , Capuzes de RNA/genética , RNA Viral/genética , Proteínas de Ligação a RNA , Vírus Sendai/genética , Replicação Viral/genética
3.
J Virol ; 87(9): 4798-807, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23449801

RESUMO

Preparations of parainfluenza virus 5 (PIV5) that are potent activators of the interferon (IFN) induction cascade were generated by high-multiplicity passage in order to accumulate defective interfering virus genomes (DIs). Nucleocapsid RNA from these virus preparations was extracted and subjected to deep sequencing. Sequencing data were analyzed using methods designed to detect internal deletion and "copyback" DIs in order to identify and characterize the different DIs present and to approximately quantify the ratio of defective to nondefective genomes. Trailer copybacks dominated the DI populations in IFN-inducing preparations of both the PIV5 wild type (wt) and PIV5-VΔC (a recombinant virus that does not encode a functional V protein). Although the PIV5 V protein is an efficient inhibitor of the IFN induction cascade, we show that nondefective PIV5 wt is unable to prevent activation of the IFN response by coinfecting copyback DIs due to the interfering effects of copyback DIs on nondefective virus protein expression. As a result, copyback DIs are able to very rapidly activate the IFN induction cascade prior to the expression of detectable levels of V protein by coinfecting nondefective virus.


Assuntos
Vírus Defeituosos/genética , Genoma Viral , Infecções por Rubulavirus/imunologia , Infecções por Rubulavirus/virologia , Rubulavirus/genética , Animais , Linhagem Celular , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Interferons/genética , Interferons/imunologia , Infecções por Rubulavirus/genética , Proteínas Virais/genética
4.
J Gen Virol ; 94(Pt 1): 59-68, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23052390

RESUMO

Interferon (IFN) induces an antiviral state in cells that results in alterations of the patterns and levels of parainfluenza virus type 5 (PIV5) transcripts and proteins. This study reports that IFN-stimulated gene 56/IFN-induced protein with tetratricopeptide repeats 1 (ISG56/IFIT1) is primarily responsible for these effects of IFN. It was shown that treating cells with IFN after infection resulted in an increase in virus transcription but an overall decrease in virus protein synthesis. As there was no obvious decrease in the overall levels of cellular protein synthesis in infected cells treated with IFN, these results suggested that ISG56/IFIT1 selectively inhibits the translation of viral mRNAs. This conclusion was supported by in vitro translation studies. Previous work has shown that ISG56/IFIT1 can restrict the replication of viruses lacking a 2'-O-methyltransferase activity, an enzyme that methylates the 2'-hydroxyl group of ribose sugars in the 5'-cap structures of mRNA. However, the data in the current study strongly suggested that PIV5 mRNAs are methylated at the 2'-hydroxyl group and thus that ISG56/IFIT1 selectively inhibits the translation of PIV5 mRNA by some as yet unrecognized mechanism. It was also shown that ISG56/IFIT1 is primarily responsible for the IFN-induced inhibition of PIV5.


Assuntos
Proteínas de Transporte/biossíntese , Interferon-alfa/farmacologia , Infecções por Respirovirus/virologia , Respirovirus/efeitos dos fármacos , Respirovirus/genética , Proteínas Virais/biossíntese , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Replicação do DNA , Técnicas de Silenciamento de Genes , Humanos , Interferon alfa-2 , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , Proteínas de Ligação a RNA , Proteínas Recombinantes/farmacologia , Respirovirus/metabolismo , Infecções por Respirovirus/tratamento farmacológico , Infecções por Respirovirus/metabolismo , Transcrição Gênica , Células Vero , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
5.
J Gen Virol ; 93(Pt 2): 299-307, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22049094

RESUMO

Conflicting reports exist regarding the requirement for virus replication in interferon (IFN) induction by paramyxoviruses. Our previous work has demonstrated that pathogen-associated molecular patterns capable of activating the IFN-induction cascade are not normally generated during virus replication, but are associated instead with the presence of defective interfering (DI) viruses. We demonstrate here that DIs of paramyxoviruses, including parainfluenza virus 5, mumps virus and Sendai virus, can activate the IFN-induction cascade and the IFN-ß promoter in the absence of virus protein synthesis. As virus protein synthesis is an absolute requirement for paramyxovirus genome replication, our results indicate that these DI viruses do not require replication to activate the IFN-induction cascade.


Assuntos
Interferon beta/biossíntese , Interferon beta/genética , Paramyxoviridae/imunologia , Paramyxoviridae/fisiologia , Regiões Promotoras Genéticas , Ativação Transcricional , Replicação Viral , Animais , Linhagem Celular , Vírus Defeituosos/genética , Vírus Defeituosos/imunologia , Humanos , Paramyxoviridae/genética , Rubulavirus , Proteínas Virais/biossíntese
6.
Virology ; 415(1): 39-46, 2011 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-21511322

RESUMO

It is generally thought that pathogen-associated molecular patterns (PAMPs) responsible for triggering interferon (IFN) induction are produced during virus replication and, to limit the activation of the IFN response by these PAMPs, viruses encode antagonists of IFN induction. Here we have studied the induction of IFN by parainfluenza virus type 5 (PIV5) at the single-cell level, using a cell line expressing GFP under the control of the IFN-ß promoter. We demonstrate that a recombinant PIV5 (termed PIV5-VΔC) that lacks a functional V protein (the viral IFN antagonist) does not activate the IFN-ß promoter in the majority of infected cells. We conclude that viral PAMPs capable of activating the IFN induction cascade are not produced or exposed during the normal replication cycle of PIV5, and suggest instead that defective viruses are primarily responsible for inducing IFN during PIV5 infection in this system.


Assuntos
Interferon beta/antagonistas & inibidores , Interferon beta/genética , Regiões Promotoras Genéticas , Rubulavirus/fisiologia , Proteínas Virais/fisiologia , Animais , Linhagem Celular , Chlorocebus aethiops , Vírus Defeituosos/genética , Vírus Defeituosos/fisiologia , Imunofluorescência , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Humanos , Immunoblotting , Interferon beta/metabolismo , Mutação , Rubulavirus/genética , Células Vero , Proteínas Virais/genética , Replicação Viral
7.
Virology ; 407(2): 247-55, 2010 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-20833406

RESUMO

The infection of cells by RNA viruses is associated with the recognition of virus PAMPs (pathogen-associated molecular patterns) and the production of type I interferon (IFN). To counter this, most, if not all, RNA viruses encode antagonists of the IFN system. Here we present data on the dynamics of IFN production and response during developing infections by paramyxoviruses, influenza A virus and bunyamwera virus. We show that only a limited number of infected cells are responsible for the production of IFN, and that this heterocellular production is a feature of the infecting virus as opposed to an intrinsic property of the cells.


Assuntos
Vírus Bunyamwera/patogenicidade , Vírus da Influenza A/patogenicidade , Interferon Tipo I/metabolismo , Rim/virologia , Pulmão/virologia , Paramyxoviridae/patogenicidade , Animais , Vírus Bunyamwera/imunologia , Linhagem Celular Tumoral/virologia , Chlorocebus aethiops , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A/imunologia , Interferon Tipo I/genética , Interferon-alfa/genética , Interferon-alfa/metabolismo , Interferon beta/genética , Interferon beta/metabolismo , Rim/citologia , Rim/imunologia , Pulmão/citologia , Pulmão/imunologia , Paramyxoviridae/imunologia , Especificidade da Espécie , Células Vero/virologia , Replicação Viral
8.
J Gen Virol ; 90(Pt 11): 2731-2738, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19625458

RESUMO

Although the Enders strain of mumps virus (MuV) encodes a functional V protein that acts as an interferon (IFN) antagonist, in multi-cycle growth assays MuV Enders grew poorly in naïve ('IFN-competent' Hep2) cells but grew to high titres in 'IFN-compromised' Hep2 cells. Even so, the growth rate of MuV Enders was significantly slower in 'IFN-compromised' Hep2 cells when compared with its replication rate in Vero cells and with the replication rate of parainfluenza virus type 5 (a closely related paramyxovirus) in both naïve and 'IFN-compromised' Hep2 cells. This suggests that a consequence of slower growth is that the IFN system of naïve Hep2 cells can respond quickly enough to control the growth of MuV Enders. This is supported by the finding that rapidly growing variants of MuV Enders that were selected on 'IFN-compromised' Hep2 cells (i.e. in the absence of any selection pressure exerted by the IFN response) also grew to high titres on naïve Hep2 cells. Sequencing of the complete genome of one of these variants identified a single point mutation that resulted in a substitution of a conserved asparagine by histidine at position 498 of the haemagglutinin-neuraminidase protein, although this mutation was not present in all rapidly growing variants. These results support the concept that there is a race between the ability of a cell to detect and respond to virus infection and the ability of a virus to block the IFN response. Importantly, this emphasizes that factors other than viral IFN antagonists influence the sensitivity of viruses to IFN.


Assuntos
Interferons/antagonistas & inibidores , Interferons/imunologia , Vírus da Caxumba/imunologia , Vírus da Caxumba/fisiologia , Replicação Viral , Substituição de Aminoácidos/genética , Animais , Linhagem Celular , Chlorocebus aethiops , Análise Mutacional de DNA , Proteína HN/genética , Humanos , Mutação de Sentido Incorreto , Ensaio de Placa Viral
9.
J Gen Virol ; 90(Pt 9): 2147-56, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19458173

RESUMO

Although the replication cycle of parainfluenza virus type 5 (PIV5) is initially severely impaired in cells in an interferon (IFN)-induced antiviral state, the virus still targets STAT1 for degradation. As a consequence, the cells can no longer respond to IFN and after 24-48 h, they go out of the antiviral state and normal virus replication is established. Following infection of cells in an IFN-induced antiviral state, viral nucleocapsid proteins are initially localized within small cytoplasmic bodies, and appearance of these cytoplasmic bodies correlates with the loss of STAT1 from infected cells. In situ hybridization, using probes specific for the NP and L genes, demonstrated the presence of virus genomes within these cytoplasmic bodies. These viral cytoplasmic bodies do not co-localize with cellular markers for stress granules, cytoplasmic P-bodies or autophagosomes. Furthermore, they are not large insoluble aggregates of viral proteins and/or nucleocapsids, as they can simply and easily be dispersed by 'cold-shocking' live cells, a process that disrupts the cytoskeleton. Given that during in vivo infections, PIV5 will inevitably infect cells in an IFN-induced antiviral state, we suggest that these cytoplasmic bodies are areas in which PIV5 genomes reside whilst the virus dismantles the antiviral state of the cells. Consequently, viral cytoplasmic bodies may play an important part in the strategy that PIV5 uses to circumvent the IFN system.


Assuntos
Citoplasma/imunologia , Genoma Viral , Corpos de Inclusão Viral/imunologia , Interferons/imunologia , Vírus da Parainfluenza 5/genética , Infecções por Rubulavirus/imunologia , Animais , Linhagem Celular , Chlorocebus aethiops , Citoplasma/genética , Citoplasma/virologia , Humanos , Corpos de Inclusão Viral/genética , Interferons/genética , Vírus da Parainfluenza 5/imunologia , Vírus da Parainfluenza 5/fisiologia , Infecções por Rubulavirus/genética , Infecções por Rubulavirus/virologia , Células Vero , Replicação Viral
10.
J Physiol ; 587(Pt 13): 3159-73, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19403603

RESUMO

Influenza A viruses cause lung disease via an incompletely understood mechanism that involves the accumulation of liquid within the lungs. The accumulation of lung liquid is normally prevented by epithelial Na(+) absorption, a transport process regulated via several pathways including phosphoinositide-3-kinase (PI3K). Since the influenza A virus encodes a non-structural protein (NS1) that can activate this kinase, we now explore the effects of NS1 upon the biophysical properties of human airway epithelial cells. Transient expression of NS1 depolarized electrically isolated cells maintained in glucocorticoid-free medium by activating a cation conductance identical to the glucocorticoid-induced conductance seen in single cells. This response involved PI3K-independent and PI3K-dependent mechanisms. Infecting glucocorticoid-deprived cells with influenza A virus disrupted the normal electrical coupling between neighbouring cells, but also activated a conductance identical to that induced by NS1. This response to virus infection was only partially dependent upon NS1-mediated activation of PI3K. The presence of NS1 allows influenza A to modify the biophysical properties of infected cells by activating a Na(+)-permeable conductance. Whilst the activation of Na(+)-permeable channels may be expected to increase the rate of Na(+) absorption and thus reduce the volume of liquid in the lung, liquid does normally accumulate in influenza A-infected lungs. The overall effect of influenza A on lung liquid volume may therefore reflect a balance between the activation and inhibition of Na(+)-permeable channels.


Assuntos
Vírus da Influenza A/patogenicidade , Canais Iônicos/metabolismo , Sistema Respiratório/metabolismo , Sistema Respiratório/virologia , Fenômenos Biofísicos , Linhagem Celular , Dexametasona/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Humanos , Vírus da Influenza A/genética , Influenza Humana/metabolismo , Influenza Humana/virologia , Transporte de Íons/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Sistema Respiratório/citologia , Sódio/metabolismo , Transfecção , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/toxicidade
11.
J Virol ; 83(3): 1465-73, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19019954

RESUMO

The RNA helicases encoded by melanoma differentiation-associated gene 5 (mda-5) and retinoic acid-inducible gene I (RIG-I) detect foreign cytoplasmic RNA molecules generated during the course of a virus infection, and their activation leads to induction of type I interferon synthesis. Paramyxoviruses limit the amount of interferon produced by infected cells through the action of their V protein, which binds to and inhibits mda-5. Here we show that activation of both mda-5 and RIG-I by double-stranded RNA (dsRNA) leads to the formation of homo-oligomers through self-association of the helicase domains. We identify a region within the helicase domain of mda-5 that is targeted by all paramyxovirus V proteins and demonstrate that they inhibit activation of mda-5 by blocking dsRNA binding and consequent self-association. In addition to this commonly targeted domain, some paramyxovirus V proteins target additional regions of mda-5. In contrast, V proteins cannot bind to RIG-I and consequently have no effect on the ability of RIG-I to bind dsRNA or to form oligomers.


Assuntos
RNA Helicases DEAD-box/antagonistas & inibidores , Paramyxoviridae/fisiologia , Proteínas Virais/fisiologia , Animais , Biopolímeros , Linhagem Celular , Chlorocebus aethiops , RNA Helicases DEAD-box/metabolismo , Humanos , Hidrólise , Helicase IFIH1 Induzida por Interferon , Técnicas do Sistema de Duplo-Híbrido , Células Vero
12.
Virology ; 368(1): 114-21, 2007 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-17640695

RESUMO

A dynamic model of STAT1 degradation by the V protein of parainfluenza virus 5 (PIV5; formerly SV5) has been proposed. In it, the V protein functions as a bipartite adaptor linking DDB1, a component of a cellular SCF-like ubiquitin E3 ligase complex, to STAT2, which in turn binds STAT1 and presents STAT1 to the E3 ligase complex for ubiquitination and subsequent degradation. Furthermore, it appears that loss of STAT1 from the complex results in decreased affinity of V for STAT2 such that STAT2 either dissociates from V or is displaced by STAT1/STAT2 complexes, facilitating the cycling of the DDB1/PIV5 V containing E3 complex for further rounds of STAT1 ubiquitination and degradation. By determining the approximate number of molecules of V, DDB1, STAT1 and STAT2 present in IFN-treated 2fTGH cells, we provide additional evidence for this dynamic model of STAT1 degradation. These results show that (i) in IFN-treated cells there is approximately 4-fold less STAT2 and 15-fold less DDB1 than STAT1 per cell and thus DDB1 and STAT2 must repeatedly acquire more STAT1 for degradation to go to completion, and (ii) approximately 600 molecules of V protein per cell can target as many as 120,000 molecules of STAT1 for degradation in the absence of either viral or cellular protein synthesis. The importance of this mechanism in terms of the ability of the virus to dismantle the IFN-induced anti-viral state of cells is discussed.


Assuntos
Interferons/imunologia , Vírus da Parainfluenza 5/imunologia , Fator de Transcrição STAT1/metabolismo , Proteínas Estruturais Virais/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Proteínas de Ligação a DNA/metabolismo , Humanos , Ligação Proteica , Fator de Transcrição STAT2/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
13.
Virology ; 365(1): 238-40, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17509637

RESUMO

Whilst screening various cell lines for their ability to respond to interferon (IFN), we noted that in comparison to other tissue culture cells AGS tumour cells, which are widely used in biomedical research, had very low levels of STAT1. Subsequent analysis showed that the reason for this is that AGS cells are persistently infected with parainfluenza virus type 5 (PIV5; formally known as SV5), a virus that blocks the interferon (IFN) response by targeting STAT1 for proteasome-mediated degradation. Virus protein expression in AGS is altered in comparison to the normal pattern of virus protein synthesis observed in acutely infected cells, suggesting that the AGS virus is defective. We discuss the relevance of these results in terms of the need to screen cell lines for persistent virus infections that can alter cellular functions.


Assuntos
Células Cultivadas/virologia , Paramyxoviridae/fisiologia , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/fisiologia , Proteínas Estruturais Virais/metabolismo , Linhagem Celular , Interferons/metabolismo , Proteínas Estruturais Virais/genética
14.
Biochem Soc Trans ; 35(Pt 2): 186-7, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17371234

RESUMO

Recent work has demonstrated that the PI3K (phosphoinositide 3-kinase) signalling pathway is important for efficient influenza A virus replication. Activation of PI3K in virus-infected cells is mediated by the viral NS1 protein, which binds directly to the p85beta regulatory subunit of PI3K and causes the PI3K-dependent phosphorylation of Akt (protein kinase B). Given that recombinant influenza A viruses unable to activate PI3K signalling are attenuated in tissue culture, the PI3K pathway could be a novel target for the development of future anti-influenza drugs.


Assuntos
Vírus da Influenza A/fisiologia , Influenza Humana/fisiopatologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Proteínas não Estruturais Virais/fisiologia , Replicação Viral , Antivirais , Surtos de Doenças , Ativação Enzimática , Humanos , Influenza Humana/epidemiologia
15.
J Gen Virol ; 88(Pt 3): 956-966, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17325370

RESUMO

Mapuera virus (MPRV) is a paramyxovirus that was originally isolated from bats, but its host range remains unknown. It was classified as a member of the genus Rubulavirus on the basis of structural and genetic features. Like other rubulaviruses it encodes a V protein (MPRV/V) that functions as an interferon (IFN) antagonist. Here we show that MPRV/V differs from the IFN antagonists of other rubulaviruses in that it does not induce the proteasomal degradation of STAT proteins, key factors in the IFN signalling cascade. Rather, MPRV/V prevents the nuclear translocation of STATs in response to IFN stimulation and inhibits the formation of the transcription factor complex ISGF3. We also show that MPRV/V blocks IFN signalling in cells from diverse mammalian species and discuss the IFN response as a barrier to cross-species infections.


Assuntos
Interferons/antagonistas & inibidores , Rubulavirus/imunologia , Fatores de Transcrição STAT/metabolismo , Proteínas Virais/fisiologia , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Fator Gênico 3 Estimulado por Interferon/metabolismo , Interferons/metabolismo , Microscopia de Fluorescência , Dados de Sequência Molecular , Fosforilação , Proteínas Virais/genética
16.
Virology ; 363(1): 166-73, 2007 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-17307214

RESUMO

We have previously reported that the addition of interferon (IFN) to the culture medium of Vero cells (which cannot produce IFN) that were infected with the CPI- strain of parainfluenza virus 5 (PIV5, formally known as SV5), that fails to block IFN signaling, rapidly induces alterations in the relative levels of virus mRNA and protein synthesis. In addition, IFN treatment also caused a rapid redistribution of virus proteins and enhanced the formation of cytoplasmic viral inclusion bodies. The most studied IFN-induced genes with known anti-viral activity are MxA, PKR and the Oligo A synthetase/RNase L system. We therefore examined the effects of these proteins on the replication cycle of PIV5. These studies revealed that while these proteins had some anti-viral activity against PIV5 they were not primarily responsible for the very rapid alteration in virus protein synthesis observed following IFN treatment, nor for the IFN-induced formation of virus inclusion bodies, in CPI- infected cells.


Assuntos
2',5'-Oligoadenilato Sintetase/metabolismo , Endorribonucleases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Interferons/imunologia , Rubulavirus/imunologia , Replicação Viral , eIF-2 Quinase/metabolismo , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Regulação Viral da Expressão Gênica , Humanos , Proteínas de Resistência a Myxovirus , Rubulavirus/fisiologia , Células Vero
17.
J Virol ; 79(21): 13434-41, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16227264

RESUMO

The V protein of simian virus 5 (SV5) facilitates the ubiquitination and subsequent proteasome-mediated degradation of STAT1. Here we show, by visualizing direct protein-protein interactions and by using the yeast two-hybrid system, that while the SV5 V protein fails to bind to STAT1 directly, it binds directly and independently to both DDB1 and STAT2, two cellular proteins known to be essential for SV5-mediated degradation of STAT1. We also demonstrate that STAT1 and STAT2 interact independently of SV5 V and show that SV5 V protein acts as an adaptor molecule linking DDB1 to STAT2/STAT1 heterodimers, which in the presence of additional accessory cellular proteins, including Cullin 4a, can ubiquitinate STAT1. Additionally, we show that the avidity of STAT2 for V is relatively weak but is significantly enhanced by the presence of both STAT1 and DDB1, i.e., the complex of STAT1, STAT2, DDB1, and SV5 V is more stable than a complex of STAT2 and V. From these studies we propose a dynamic model in which SV5 V acts as a bridge, bringing together a DDB1/Cullin 4a-containing ubiquitin ligase complex and STAT1/STAT2 heterodimers, which leads to the degradation of STAT1. The loss of STAT1 results in a decrease in affinity of binding of STAT2 for V such that STAT2 either dissociates from V or is displaced from V by STAT1/STAT2 complexes, thereby ensuring the cycling of the DDB1 and SV5 V containing E3 complex for continued rounds of STAT1 ubiquitination and degradation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Vírus da Parainfluenza 5/fisiologia , Transativadores/metabolismo , Proteínas Estruturais Virais/metabolismo , Animais , Proteínas Culina/metabolismo , Dimerização , Vírus da Parainfluenza 5/metabolismo , Ligação Proteica , Fator de Transcrição STAT1 , Fator de Transcrição STAT2 , Transdução de Sinais , Replicação Viral
18.
J Virol ; 79(22): 14112-21, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16254346

RESUMO

Although parainfluenza virus 5 (simian virus 5 [SV5]) circumvents the interferon (IFN) response by blocking IFN signaling and by reducing the amount of IFN released by infected cells, its ability to circumvent the IFN response is not absolute. The effects of IFN on SV5 infection were examined in Vero cells, which do not produce but can respond to IFN, using a strain of SV5 (CPI-) which does not block IFN signaling. Thus, by infecting Vero cells with CPI- and subsequently treating the cells with exogenous IFN, it was possible to observe the effects that IFN had on SV5 infection in the absence of virus countermeasures. IFN rapidly (within 6 h) induced alterations in the relative levels of virus mRNA and protein synthesis and caused a redistribution of virus proteins within infected cells that led to the enhanced formation of virus cytoplasmic inclusion bodies. IFN induced a steeper gradient of mRNA transcription from the 3' to the 5' end of the genome and the production of virus mRNAs with longer poly(A) tails, suggesting that the processivity of the virus polymerase was altered in cells in an IFN-induced antiviral state. Additional evidence is presented which suggests that these findings also apply to the replication of strains of SV5, parainfluenza virus type 2, and mumps virus that block IFN signaling when they infect cells that are already in an IFN-induced antiviral state.


Assuntos
Interferons/farmacologia , Respirovirus/genética , Transcrição Gênica , Proteínas Virais/genética , Animais , Chlorocebus aethiops , Regulação Viral da Expressão Gênica , Corpos de Inclusão Viral/efeitos dos fármacos , Corpos de Inclusão Viral/imunologia , Corpos de Inclusão Viral/fisiologia , Células Vero , Proteínas Virais/biossíntese
19.
J Gen Virol ; 86(Pt 1): 151-158, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15604442

RESUMO

Previous work has documented that the V protein of simian virus 5 (SV5) targets STAT1 for proteasome-mediated degradation, whilst the V protein of human parainfluenza virus type 2 (hPIV2) targets STAT2. Here, it was shown that the processes of ubiquitination and degradation could be reconstructed in vitro by using programmed rabbit reticulocyte lysates. Using this system, the addition of bacterially expressed and purified SV5 V protein to programmed lysates was demonstrated to result in the polyubiquitination and degradation of in vitro-translated STAT1, but only if human STAT2 was also present. Surprisingly, in the same assay, purified hPIV2 V protein induced the polyubiquitination of both STAT1 and STAT2. In the light of these in vitro results, the specificity of degradation of STAT1 and STAT2 by SV5 and hPIV2 in tissue-culture cells was re-examined. As previously reported, STAT1 could not be detected in human cells that expressed SV5 V protein constitutively, whilst STAT2 could not be detected in human cells that expressed hPIV2 V protein, although the levels of STAT1 may also have been reduced in some human cells infected with hPIV2. In contrast, STAT1 could not be detected, whereas STAT2 remained present, in a variety of animal cells, including canine (MDCK) cells, that expressed the V protein of either SV5 or hPIV2. Thus, the V protein of SV5 appears to be highly specific for STAT1 degradation, but the V protein of hPIV2 is more promiscuous.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Respirovirus/metabolismo , Transativadores/metabolismo , Proteínas Virais/metabolismo , Proteínas Estruturais Virais/metabolismo , Animais , Linhagem Celular , Humanos , Coelhos , Reticulócitos/metabolismo , Fator de Transcrição STAT1 , Fator de Transcrição STAT2 , Transdução de Sinais , Especificidade da Espécie , Ubiquitina/metabolismo
20.
Proc Natl Acad Sci U S A ; 101(49): 17264-9, 2004 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-15563593

RESUMO

Most paramyxoviruses circumvent the IFN response by blocking IFN signaling and limiting the production of IFN by virus-infected cells. Here we report that the highly conserved cysteine-rich C-terminal domain of the V proteins of a wide variety of paramyxoviruses binds melanoma differentiation-associated gene 5 (mda-5) product. mda-5 is an IFN-inducible host cell DExD/H box helicase that contains a caspase recruitment domain at its N terminus. Overexpression of mda-5 stimulated the basal activity of the IFN-beta promoter in reporter gene assays and significantly enhanced the activation of the IFN-beta promoter by intracellular dsRNA. Both these activities were repressed by coexpression of the V proteins of simian virus 5, human parainfluenza virus 2, mumps virus, Sendai virus, and Hendra virus. Similar results to the reporter assays were obtained by measuring IFN production. Inhibition of mda-5 by RNA interference or by dominant interfering forms of mda-5 significantly inhibited the activation of the IFN-beta promoter by dsRNA. It thus appears that mda-5 plays a central role in an intracellular signal transduction pathway that can lead to the activation of the IFN-beta promoter, and that the V proteins of paramyxoviruses interact with mda-5 to block its activity.


Assuntos
Interferon beta/genética , Paramyxoviridae/química , RNA Helicases/antagonistas & inibidores , Ativação Transcricional/efeitos dos fármacos , Proteínas Virais/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , RNA Helicases DEAD-box , Humanos , Helicase IFIH1 Induzida por Interferon , Regiões Promotoras Genéticas/efeitos dos fármacos , Ligação Proteica , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Interferente Pequeno/farmacologia , Transdução de Sinais , Transfecção , Proteínas Virais/genética , Proteínas Virais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...