Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(8): e29255, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38681569

RESUMO

The ternary photocatalyst ((Al2Si2O5 (OH)4/TiO2/Al2O3) composites (where w/w = 65, 30, and 5 wt%) denoted K65T30A5 were successfully synthesized and examined for their efficiency in removing cationic (Methylene Blue, MB) and anionic (Remazol Red, RR) dye from aqueous medium under visible-light irradiation. A series of nanocomposites with varied wt% of kaolinite, TiO2, and Al2O3 were prepared through sonication followed by calcination at 600 °C. X-ray diffraction (XRD) analysis confirmed the crystallinity of the synthesized materials and established their average crystal size to be 83.87 nm. The morphological structure, composite molecule, and surface properties of the resulting K65T30A5 were characterized using FTIR, FE-SEM, and EDS analyses to confirm the successful fabrication of the nanocomposite. FTIR and EDS elemental mapping analyses confirmed the presence of Al, Si, Ti, and O elements in the nanocomposites. The composites exhibited photocatalytic behaviour across the UV-visible spectra, with values varying from the ultraviolet to the visible region with a sharp increase in reflectance at 510 nm. Near-complete degradation of MB (97.66 %) was achieved within 90 min at pH 9 and a 10 mg/L dye concentration, while RR removal reached 90.66 % within 120 min at pH 3.5 and the same dye concentration under visible light irradiation. The catalyst exhibited robust stability, retaining its efficiency by removing 85.09 % of MB and 80.21 % of RR dye after three reuse cycles. The composite catalyst discussed in this study emerges as a promising material for straightforward fabrication techniques, featuring a high percentage of kaolinite and proving to be a cost-effective solution for large-scale water and wastewater treatment processes.

2.
ACS Appl Bio Mater ; 7(2): 961-976, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38308644

RESUMO

Electrospun nanofibrous membranes are of great interest for tissue engineering, active material delivery, and wound dressing. These nanofibers possess unique three-dimensional (3D) interconnected porous structures that result in a higher surface-area-to-volume ratio and porosity. This study was carried out to prepare nanofibrous membranes by electrospinning a blend of PVA/chitosan polymeric solution functionalized with different ratios of copper oxide. Chitosan-stabilized CuO nanoparticles (CH-CuO NPs) were biosynthesized successfully utilizing chitosan as the capping and reducing agent. XRD analysis confirmed the monoclinic structure of CH-CuO NPs. In addition, the electrospun nanofibrous membranes were UV-crosslinked for a definite time. The membranes containing CH-CuO NPs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-vis) spectrophotometry, and dynamic light scattering (DLS). SEM results showed the nanosize of the fiber diameter in the range of 147-207 nm. The FTIR spectroscopy results indicated the successful incorporation of CH-CuO NPs into the PVA/chitosan nanofibrous membranes. DSC analysis proved the enhanced thermal stability of the nanofibrous membranes due to UV-crosslinking. Swelling and degradation tests were carried out to ensure membrane stability. Greater antimicrobial activity was observed in the nanoparticle-loaded membrane. An in vitro release study of Cu2+ ions from the membrane was carried out for 24 h. The cytotoxicity of CH-CuO NP-incorporated membranes was investigated to estimate the safe dose of nanoparticles. An in vivo test using the CH-CuO NP-loaded PVA/chitosan membrane was conducted on a mice model, in which wound healing occurred in approximately 12 days. These results confirmed that the biocompatible, nontoxic nanofibrous membranes are ideal for wound-dressing applications.


Assuntos
Quitosana , Nanofibras , Nanoestruturas , Camundongos , Animais , Quitosana/química , Cicatrização , Nanofibras/química , Bandagens
3.
Int J Biol Macromol ; 262(Pt 2): 130040, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346618

RESUMO

The leather industry poses a significant environmental problem through the extensive discharge of trimming waste, primarily composed of skin matrix rich in proteins. Developing a green approach for utilizing this waste can contribute to the sustainable recovery of proteins, transforming them into valuable bioresources. This study introduces an environmentally friendly and economically viable approach to extract collagen from tannery raw trimming waste using papain enzyme-derived from papaya leaves. The research involved extensive assessments and trials to optimize the enzymatic hydrolysis process. The highest collagen recovery was achieved by hydrolyzing 5 % (w/v) delimed powder with 4 % (w/v) crude papain enzyme from papaya leaf powder, maintaining it at 60 °C for 6 h and at pH 5. Collagen extraction from raw trimming waste using acetic acid was also performed, with the optimized papain enzyme-based hydrolysis process resulting in approximately 91 % yield, while conventional acetic acid method yielded approximately 84 %. To evaluate the performance of the enzymatic hydrolysis process in comparison to acid hydrolysis and hydrothermal hydrolysis, an integrated MW-TOPSIS framework was proposed. This framework determined that enzymatic hydrolysis achieved the highest closeness coefficient value (Ri = 0.40), indicating its superiority as the preferred alternative among the tested methods.


Assuntos
Colágeno , Papaína , Pós , Hidrólise , Acetatos
4.
Soft Matter ; 18(44): 8367-8383, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36321472

RESUMO

Designing and developing modern techniques to facilitate the extraction and modification of functional properties of biopolymers are key motivations among researchers. As a low-cost, sustainable, non-toxic, and fast process, ultrasound has been considered a method to improve the processing of carbohydrate and protein-based biopolymers such as cellulose, chitin, starch, alginate, carrageenan, gelatine, and guar gum. A better understanding of the complex physicochemical behavior of biopolymers under ultrasonication may fortify the eminence of this technology in advanced-level applications. This review summarizes the recent advances in biopolymer processing and the effect of ultrasound on the physical properties of the selected biopolymers. A major focus will be given to the mechanisms of action and their impact on the properties and extraction. At the end, some possible suggestions are highlighted which need future investigation for amending the physical properties of biopolymers using ultrasonication.


Assuntos
Celulose , Quitina , Biopolímeros/química , Celulose/química , Quitina/química , Amido/química , Alginatos/química , Gelatina
5.
Gels ; 8(6)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35735684

RESUMO

A Semi Interpenetrating Polymer Network (semi-IPN) hydrogel was prepared and loaded with an antibiotic drug, gentamicin, to investigate the wound healing activity of this system. The semi-IPN hydrogel was synthesized by combining natural polymer cellulose nanocrystal (CNC) and synthetic polymer polyethylene glycol (PEG) and poly (N,N'-dimethyl acrylamide) (PDMAA), which was initially added as a monomer dimethyl acrylamide (DMAA). CNC was prepared from locally obtained jute fibers, dispersed in a PEG-NaOH solvent system and then mixed with monomer DMAA, where polymerization was initiated by an initiator potassium persulphate (KPS) and cross-linked by N,N'-methylenebisacrylamide (NMBA). The size, morphology, biocompatibility, antimicrobial activity, thermal and swelling properties of the hydrogel were investigated by different characterization techniques. The biocompatibility of the hydrogel was confirmed by cytotoxicity analysis, which showed >95% survival of the BHK-21, Vero cell line. The drug loaded hydrogel showed antimicrobial property by forming 25 and 23 mm zone of inhibition against Staphylococcus aureus (gram-positive) and Escherichia coli (gram-negative) bacteria, respectively, in antimicrobial analysis. At pH 5.5, 76% of the drug was released from the hydrogel within 72 h, as observed in an in vitro drug release profile. In an in vivo test, the healing efficiency of the drug loaded hydrogel was examined on a mice model with dorsal wounds. Complete healing of the wound without any scar formation was achieved in 12 days, which revealed excellent wound healing properties of the prepared drug loaded semi-IPN hydrogel. These results showed the relevance of such a system in the rapid healing of acute wounds.

6.
J Chem Health Saf ; 29(2): 135-164, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37556270

RESUMO

The coronavirus disease 2019 (COVID-19) epidemic, which is caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has continued to spread around the world since December 2019. Healthcare workers and other medical first responders in particular need personal protective equipment to protect their respiratory system from airborne particulates, in addition to liquid splashes to the face. N95 respirator have become a critical component for reducing SARS-CoV-2 transmission and controlling the scale of the COVID-19 pandemic. However, a major dispute concerning the protective performance of N95 respirators has erupted, with a myriad of healthcare workers affected despite wearing N95 masks. This article reviews the most recent updates about the performance of N95 respirators in protecting against the SARS-CoV-2 virus in the present pandemic situation. A brief overview of the manufacturing methods, air filtration mechanisms, stability, and reusability of the mask is provided. A detailed performance evaluation of the mask is studied from an engineering point of view. This Review also reports on a comparative study about the protective performance of all commercially available surgical and respiratory masks used to combat the spread of COVID-19. With the aim of protecting healthcare providers more efficiently, we suggest some potential directions for the development of this respiratory mask that improve the performance efficiency of the mask.

7.
Gels ; 7(1)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803815

RESUMO

Finding affordable and environment-friendly options to decontaminate wastewater generated with heavy metals and dyes to prevent the depletion of accessible freshwater resources is one of the indispensable challenges of the 21st century. Adsorption is yet to be the most effective and low-cost wastewater treatment method used for the removal of pollutants from wastewater, while naturally derived adsorbent materials have garnered tremendous attention. One promising example of such adsorbents is hydrogels (HGs), which constitute a three-dimensional polymeric network of hydrophilic groups that is highly capable of adsorbing a large quantity of metal ions and dyes from wastewater. Although HGs can also be prepared from synthetic polymers, natural polymers have improved environmental benignity. Recently, cellulose-based hydrogels (CBHs) have been extensively studied owing to their high abundance, biodegradability, non-toxicity, and excellent adsorption capacity. This review emphasizes different CBH adsorbents in the context of dyes and heavy metals removal from wastewater following diverse synthesis techniques and adsorption mechanisms. This study also summarizes various process parameters necessary to optimize adsorption capacity followed by future research directions.

8.
Bioact Mater ; 5(1): 164-183, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32083230

RESUMO

In recent years, there have been increasingly rapid advances of using bioactive materials in tissue engineering applications. Bioactive materials constitute many different structures based upon ceramic, metallic or polymeric materials, and can elicit specific tissue responses. However, most of them are relatively brittle, stiff, and difficult to form into complex shapes. Hence, there has been a growing demand for preparing materials with tailored physical, biological, and mechanical properties, as well as predictable degradation behavior. Chitosan-based materials have been shown to be ideal bioactive materials due to their outstanding properties such as formability into different structures, and fabricability with a wide range of bioactive materials, in addition to their biocompatibility and biodegradability. This review highlights scientific findings concerning the use of innovative chitosan-based bioactive materials in the fields of tissue engineering, with an outlook into their future applications. It also covers latest developments in terms of constituents, fabrication technologies, structural, and bioactive properties of these materials that may represent an effective solution for tissue engineering materials, making them a realistic clinical alternative in the near future.

9.
Gels ; 5(3)2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31323748

RESUMO

In the present article, the commercial value of fish scales (FS), one of the most discarded fish wastes, has been identified by discovering their gelation capability. Fish scales of different physical forms were applied for the removal of dyes (acid red 1 (AR1), acid blue 45 (AB45), and acid yellow 127 (AY127)) from textile dye solution by absorption process. An astounding phenomenon, gelation of the treated solution, was noticed when it was aged for a certain period. The absorption of dye by FS was confirmed and quantified by FT-IR and UV-visible spectroscopy analyses, respectively. Process optimization revealed that pristine FS showed better gelation efficacy compared to pulverized FS. The gelation process was successful only when the dye solution contained acid and salt. As most of the textile effluents contain acids and salts in the discarded dye solution, this gelation process implies an obvious indication of the saving process and chemical cost in textile waste treatment. The jellified wastewater was characterized by exploring the rheological properties. Based on these analyses, potential application areas have been discussed.

10.
Bioact Mater ; 2(4): 199-207, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29744430

RESUMO

The present study explores the possibilities of using locally available inexpensive waste prawn shell derived chitin reinforced and bioabsorbable polylactic acid (PLA) laminated composites to develop new materials with excellent mechanical and thermal properties for implantable application such as in bone or dental implant. Chitin at different concentration (1-20% of PLA) reinforced PLA films (CTP) were fabricated by solvent casting process and laminated chitin-PLA composites (LCTP) were prepared by laminating PLA film (obtained by hot press method) with CTP also by hot press method at 160 °C. The effect of variation of chitin concentration on the resulting laminated composite's behavior was investigated. The detailed physico-mechanical, surface morphology and thermal were assessed with different characterization technique such as FT-IR, XRD, SEM and TGA. The FTIR spectra showed the characteristic peaks for chitin and PLA in the composites. SEM images showed an excellent dispersion of chitin in the films and composites. Thermogravimetric analysis (TGA) showed that the complete degradation of chitin, PLA film, 5% chitin reinforced PLA film (CTP2) and LCTP are 98%, 95%, 87% and 98% respectively at temperature of 500 °C. The tensile strength of the LCTP was found 25.09 MPa which is significantly higher than pure PLA film (18.55 MPa) and CTP2 film (8.83 MPa). After lamination of pure PLA and CTP2 film, the composite (LCTP) yielded 0.265-1.061% water absorption from 30 min to 24 h immerse in water that is much lower than PLA and CTP. The increased mechanical properties of the laminated films with the increase of chitin content indicated good dispersion of chitin into PLA and strong interfacial actions between the polymer and chitin. The improvement of mechanical properties and the results of antimicrobial and cytotoxicity of the composites also evaluated and revealed the composite would be a suitable candidate for implant application in biomedical sector.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA