Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Mol Pharm ; 21(4): 1609-1624, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38412451

RESUMO

Cannabidiol (CBD) is the most relevant nonpsychostimulant phytocompound found in Cannabis sativa. CBD has been extensively studied and has been proposed as a therapeutic candidate for neuroinflammation-related conditions. However, being a highly lipophilic drug, it has several drawbacks for pharmaceutical use, including low solubility and high permeability. Synthetic polymers can be used as drug delivery systems to improve CBD's stability, half-life, and biodistribution. Here, we propose using a synthetic polymer as a nanoparticulate vehicle for CBD (NPCBD) to overcome the pharmacological drawbacks of free drugs. We tested the NPCBD-engineered system in the context of ischemic events in a relevant oxygen and glucose deprivation (OGD) model in primary cortical cells (PCC). Moreover, we have characterized the inflammatory response of relevant cell types, such as THP-1 (human monocytes), HMC3 (human microglia), and PCC, to NPCBD and observed a shift in the inflammatory state of the treated cells after the ischemic event. In addition, NPCBD exhibited a promising ability to restore mitochondrial function after OGD insult in both HMC3 and PCC cells at low doses of 1 and 0.2 µM CBD. Taken together, these results suggest the potential for preclinical use.


Assuntos
Canabidiol , Humanos , Canabidiol/uso terapêutico , Canabidiol/farmacologia , Doenças Neuroinflamatórias , Distribuição Tecidual , Encéfalo , Oxigênio
2.
PNAS Nexus ; 3(1): pgad439, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38178977

RESUMO

Parkinson's disease (PD) associated state of neuroinflammation due to the aggregation of aberrant proteins is widely reported. One type of post-translational modification involved in protein stability is glycosylation. Here, we aimed to characterize the human Parkinsonian nigro-striatal N-glycome, and related transcriptome/proteome, and its correlation with endoplasmic reticulum (ER) stress and unfolded protein response (UPR), providing a comprehensive characterization of the PD molecular signature. Significant changes were seen upon a PD: a 3% increase in sialylation and 5% increase in fucosylation in both regions, and a 2% increase in oligomannosylated N-glycans in the substantia nigra. In the latter, a decrease in the mRNA expression of sialidases and an upregulation in the UPR pathway were also seen. To show the correlation between these, we also describe a small in vitro study where changes in specific glycosylation trait enzymes (inhibition of sialyltransferases) led to impairments in cell mitochondrial activity, changes in glyco-profile, and upregulation in UPR pathways. This complete characterization of the human nigro-striatal N-glycome provides an insight into the glycomic profile of PD through a transversal approach while combining the other PD "omics" pieces, which can potentially assist in the development of glyco-focused therapeutics.

3.
J Proteome Res ; 21(6): 1449-1466, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35506863

RESUMO

Traumatic spinal cord injury (SCI) results in disruption of tissue integrity and loss of function. We hypothesize that glycosylation has a role in determining the occurrence of regeneration and that biomaterial treatment can influence this glycosylation response. We investigated the glycosylation response to spinal cord transection in Xenopus laevis and rat. Transected rats received an aligned collagen hydrogel. The response compared regenerative success, regenerative failure, and treatment in an established nonregenerative mammalian system. In a healthy rat spinal cord, ultraperformance liquid chromatography (UPLC) N-glycoprofiling identified complex, hybrid, and oligomannose N-glycans. Following rat SCI, complex and outer-arm fucosylated glycans decreased while oligomannose and hybrid structures increased. Sialic acid was associated with microglia/macrophages following SCI. Treatment with aligned collagen hydrogel had a minimal effect on the glycosylation response. In Xenopus, lectin histochemistry revealed increased levels of N-acetyl-glucosamine (GlcNAc) in premetamorphic animals. The addition of GlcNAc is required for processing complex-type glycans and is a necessary foundation for additional branching. A large increase in sialic acid was observed in nonregenerative animals. This work suggests that glycosylation may influence regenerative success. In particular, loss of complex glycans in rat spinal cord may contribute to regeneration failure. Targeting the glycosylation response may be a promising strategy for future therapies.


Assuntos
Ácido N-Acetilneuramínico , Traumatismos da Medula Espinal , Animais , Glicosilação , Hidrogéis , Mamíferos , Ratos , Medula Espinal , Xenopus laevis
4.
Trends Mol Med ; 28(4): 270-289, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35120836

RESUMO

The importance of glycosylation (post-translational attachment of glycan residues to proteins) in the context of neuroinflammation is only now beginning to be understood. Although the glycome is challenging to investigate due to its complexity, this field is gaining interest because of the emergence of novel analytical methods. These investigations offer the possibility of further understanding the molecular signature of disorders with underlying neuroinflammatory cascades. In this review, we portray the clinically relevant trends in glyconeurobiology and suggest glyco-related paths that could be targeted therapeutically to decrease neuroinflammation. A combinatorial insight from glycobiology and neurology can be harnessed to better understand neuroinflammatory-related conditions to identify relevant molecular targets.


Assuntos
Doenças Neuroinflamatórias , Polissacarídeos , Glicosilação , Humanos , Polissacarídeos/metabolismo , Processamento de Proteína Pós-Traducional
5.
J Neuroinflammation ; 18(1): 116, 2021 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-33993882

RESUMO

BACKGROUND: Neuroinflammation is an underlying pathology of all neurological conditions, the understanding of which is still being comprehended. A specific molecular pathway that has been overlooked in neuroinflammation is glycosylation (i.e., post-translational addition of glycans to the protein structure). N-glycosylation is a specific type of glycosylation with a cardinal role in the central nervous system (CNS), which is highlighted by congenital glycosylation diseases that result in neuropathological symptoms such as epilepsy and mental retardation. Changes in N-glycosylation can ultimately affect glycoproteins' functions, which will have an impact on cell machinery. Therefore, characterisation of N-glycosylation alterations in a neuroinflammatory scenario can provide a potential target for future therapies. METHODS: With that aim, the unilateral intrastriatal injection of lipopolysaccharide (LPS) in the adult rat brain was used as a model of neuroinflammation. In vivo and post-mortem, quantitative and spatial characterisation of both neuroinflammation and N-glycome was performed at 1-week post-injection of LPS. These aspects were investigated through a multifaceted approach based on positron emission tomography (PET), quantitative histology, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), liquid chromatography and matrix-assisted laser desorption ionisation mass spectrometry imaging (MALDI-MSI). RESULTS: In the brain region showing LPS-induced neuroinflammation, a significant decrease in the abundance of sialylated and core fucosylated structures was seen (approximately 7.5% and 8.5%, respectively), whereas oligomannose N-glycans were significantly increased (13.5%). This was confirmed by MALDI-MSI, which provided a high-resolution spatial distribution of N-glycans, allowing precise comparison between normal and diseased brain hemispheres. CONCLUSIONS: Together, our data show for the first time the complete profiling of N-glycomic changes in a well-characterised animal model of neuroinflammation. These data represent a pioneering step to identify critical targets that may modulate neuroinflammation in neurodegenerative diseases.


Assuntos
Encéfalo , Glicosilação , Inflamação/metabolismo , Polissacarídeos/análise , Polissacarídeos/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Mapeamento Encefálico , Cromatografia Líquida/métodos , Modelos Animais de Doenças , Glicômica , Masculino , Tomografia por Emissão de Pósitrons , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
6.
Biomaterials ; 269: 120641, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33493768

RESUMO

Critical limb ischemia (CLI) is characterized by the impairment of microcirculation, necrosis and inflammation of the muscular tissue. Although the role of glycans in mediating inflammation has been reported, changes in the glycosylation following muscle ischemia remains poorly understood. Here, a murine CLI model was used to show the increase of high mannose, α-(2, 6)-sialic acid and the decrease of hybrid and bisected N-glycans as glycosylation associated with the ischemic environment. Using this model, the efficacy of an elastin-like recombinamers (ELR) hydrogel was assessed. The hydrogel modulates key angiogenic signaling pathways, resulting in capillary formation, and ECM remodeling. Arterioles formation, reduction of fibrosis and anti-inflammatory macrophage polarization wa also induced by the hydrogel administration. Modulation of glycosylation was observed, suggesting, in particular, a role for mannosylation and sialylation in the mediation of tissue repair. Our study elucidates the angiogenic potential of the ELR hydrogel for CLI applications and identifies glycosylation alterations as potential new therapeutic targets.


Assuntos
Elastina , Hidrogéis , Isquemia/terapia , Neovascularização Fisiológica , Animais , Glicosilação , Inflamação , Isquemia/patologia , Camundongos
7.
STAR Protoc ; 2(1): 100237, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33364625

RESUMO

Lectin histochemical analysis of tissues combined with immunohistochemistry is a valuable tool to characterize and correlate the spatial distribution of glycans with the presence of specific cell types or antigens of interest. The current protocol describes the application of monosaccharide motif specificity of lectin binding to glycan residues to different tissue types. In addition, we describe stereological methods to provide further quantification of the analyzed tissues. For complete details on the use and execution of this protocol, please refer to Mohd Isa et al. (2018), Contessotto et al. (2020), and Samal et al. (2020).


Assuntos
Corantes Fluorescentes/química , Imuno-Histoquímica , Lectinas/química , Polissacarídeos/metabolismo , Animais , Humanos , Camundongos , Especificidade de Órgãos
8.
Biomacromolecules ; 21(7): 2681-2694, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32433878

RESUMO

Glycans play a central role in the development and homeostasis of the central nervous system (CNS), so changes in the glycosylation profile of the cell surface and extracellular matrix (ECM) components are evident in CNS disorders. Regenerative medicine-based strategies using biomaterial platforms are being increasingly used to target these diseases and to study the glyco-signature of the physiological and pathological conditions, particularly through the use of biomaterials able to recapitulate natural components and physical organization of the ECM. Collagen hydrogels have shown potential as a vehicle for the delivery of cells into the brain, and their therapeutic effect can be expanded by functionalizing them to address the glycosylation patterns altered with specific brain disorders. The goal of this study is to develop and optimize a glycan-functionalized tridimensional collagen-based hydrogel that will make contact with and modulate the differentiation of a primary neuronal culture. The developed system would provide more information on how a glyco-engineered material can influence the native glyco-signature profile during the process of cell differentiation by a differential modulation of glycan expression at the tissue level. To this purpose, collagen polymers underwent one step reductive amination with maltose (Glc(α1-4)α-Glc) and lactose (Gal(ß1-4)ß-Glc) so that the pyranosidic structure of the reducing sugar could be sacrificed (acting as a linker) and the α-Glc and ß-Gal residues exposed, respectively. The glycoconjugate biopolymers were used to formulate hydrogels that were chemically and biologically characterized, and the glyco-signature profile of a neuronal culture after hydrogel treatment was analyzed by lectin staining. The hydrogel conjugated with glucose limited the astrocytic proliferation for up to 2 weeks and promoted the increase in sialylation while decreasing fucosylation by 2-fold. These results indicate the differential influence of glycan residues present in the matrix on cellular sugar expression and thus have potential to enhance cell delivery systems in the central nervous system.


Assuntos
Matriz Extracelular , Hidrogéis , Colágeno , Neurônios , Polissacarídeos
9.
Adv Drug Deliv Rev ; 148: 68-145, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30710594

RESUMO

Therapeutic conveyance into the brain is a cardinal requirement for treatment of diverse central nervous system (CNS) disorders and associated pathophysiology. Effectual shielding of the brain by the blood-brain barrier (BBB) sieves out major proportion of therapeutics with the exception of small lipophilic molecules. Various nano-delivery systems (NDS) provide an effective solution around this obstacle owing to their small size and targeting properties. To date, these systems have been used for several pre-clinical disease models including glioma, neurodegenerative diseases and psychotic disorders. An efficacy screen for these systems involves a test battery designed to probe into the multiple facets of therapeutic delivery. Despite their wide application in redressing various disease targets, the efficacy evaluation strategies for all can be broadly grouped into four modalities, namely: histological, bio-imaging, molecular and behavioural. This review presents a comprehensive insight into all of these modalities along with their strengths and weaknesses as well as perspectives on an ideal design for a panel of tests to screen brain nano-delivery systems.


Assuntos
Materiais Biocompatíveis/farmacologia , Encéfalo/efeitos dos fármacos , Doenças do Sistema Nervoso Central/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Materiais Biocompatíveis/química , Sistemas de Liberação de Medicamentos , Humanos , Nanomedicina , Nanopartículas/química , Fármacos Neuroprotetores/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...