Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Sci Rep ; 13(1): 19386, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938627

RESUMO

Ataxia telangiectasia is a monogenetic disorder caused by mutations in the ATM gene. Its encoded protein kinase ATM plays a fundamental role in DNA repair of double strand breaks (DSBs). Impaired function of this kinase leads to a multisystemic disorder including immunodeficiency, progressive cerebellar degeneration, radiation sensitivity, dilated blood vessels, premature aging and a predisposition to cancer. Since allogenic hematopoietic stem cell (HSC) transplantation improved disease outcome, gene therapy based on autologous HSCs is an alternative promising concept. However, due to the large cDNA of ATM (9.2 kb), efficient packaging of retroviral particles and sufficient transduction of HSCs remains challenging.We generated lentiviral, gammaretroviral and foamy viral vectors with a GFP.F2A.Atm fusion or a GFP transgene and systematically compared transduction efficiencies. Vector titers dropped with increasing transgene size, but despite their described limited packaging capacity, we were able to produce lentiviral and gammaretroviral particles. The reduction in titers could not be explained by impaired packaging of the viral genomes, but the main differences occurred after transduction. Finally, after transduction of Atm-deficient (ATM-KO) murine fibroblasts with the lentiviral vector expressing Atm, we could show the expression of ATM protein which phosphorylated its downstream substrates (pKap1 and p-p53).


Assuntos
Ataxia Telangiectasia , Animais , Camundongos , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/terapia , Genoma Viral , Transgenes , Genótipo , Terapia Genética
2.
Front Cell Dev Biol ; 8: 608600, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33365312

RESUMO

Neutrophils are the first cells recruited at the site of infections, where they phagocytose the pathogens. Inside the phagosome, pathogens are killed by proteolytic enzymes that are delivered to the phagosome following granule fusion, and by reactive oxygen species (ROS) produced by the NADPH oxidase. The NADPH oxidase complex comprises membrane proteins (NOX2 and p22phox), cytoplasmic subunits (p67phox, p47phox, and p40phox) and the small GTPase Rac. These subunits assemble at the phagosomal membrane upon phagocytosis. In resting neutrophils the catalytic subunit NOX2 is mainly present at the plasma membrane and in the specific granules. We show here that NOX2 is also present in early and recycling endosomes in human neutrophils and in the neutrophil-like cell line PLB-985 expressing GFP-NOX2. In the latter cells, an increase in NOX2 at the phagosomal membrane was detected by live-imaging after phagosome closure, probably due to fusion of endosomes with the phagosome. Using super-resolution microscopy in PLB-985 WT cells, we observed that NOX2 forms discrete clusters in the plasma membrane. The number of clusters increased during frustrated phagocytosis. In PLB-985NCF1ΔGT cells that lack p47phox and do not assemble a functional NADPH oxidase, the number of clusters remained stable during phagocytosis. Our data suggest a role for p47phox and possibly ROS production in NOX2 recruitment at the phagosome.

3.
Swiss Med Wkly ; 150: w20254, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32579701

RESUMO

The recent introduction of newborn screening for severe primary T and B cell deficiencies in Switzerland allows rapid identification of patients with severe combined immunodeficiency (SCID). Outcomes for SCID are greatly improved by early diagnosis and treatment with allogeneic haematopoietic stem cell transplantation or, in selected cases, gene therapy. National centralised newborn screening is performed in Switzerland since January 2019 using a combined T cell receptor excision circles (TREC) / κ-deleting recombination excision circles (KREC) assay, also revealing infants with non-SCID severe T and B cell disorders, who are often diagnosed with a substantial delay. Here, we outline the screening procedure currently performed in Switzerland and give recommendations for diagnostic evaluations and precautionary measures against infection in children with abnormal screening test results.


Assuntos
Triagem Neonatal , Imunodeficiência Combinada Severa , Linfócitos B , Humanos , Recém-Nascido , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , Suíça , Linfócitos T
4.
Mol Ther Methods Clin Dev ; 17: 936-943, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32420407

RESUMO

Resurrection of non-processed pseudogenes may increase the efficacy of therapeutic gene editing, upon simultaneous targeting of a mutated gene and its highly homologous pseudogenes. To investigate the potency of this approach for clinical gene therapy of human diseases, we corrected a pseudogene-associated disorder, the immunodeficiency p47 phox -deficient chronic granulomatous disease (p47 phox CGD), using clustered regularly interspaced short palindromic repeats-associated nuclease Cas9 (CRISPR-Cas9) to target mutated neutrophil cytosolic factor 1 (NCF1). Being separated by less than two million base pairs, NCF1 and two pseudogenes are closely co-localized on chromosome 7. In healthy people, a two-nucleotide GT deletion (ΔGT) is present in the NCF1B and NCF1C pseudogenes only. In the majority of patients with p47 phox CGD, the NCF1 gene is inactivated due to a ΔGT transfer from one of the two non-processed pseudogenes. Here we demonstrate that concurrent targeting and correction of mutated NCF1 and its pseudogenes results in therapeutic CGD phenotype correction, but also causes potentially harmful chromosomal deletions between the targeted loci in a p47 phox -deficient CGD cell line model. Therefore, development of genome-editing-based treatment of pseudogene-related disorders mandates thorough safety examination, as well as technological advances, limiting concurrent induction of multiple double-strand breaks on a single chromosome.

5.
Front Immunol ; 10: 2236, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681257

RESUMO

Background: Chronic granulomatous disease (CGD) is caused by a malfunctioning nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex in phagocytes, leading to impaired bacterial and fungal killing and hyperinflammation. Objective: To characterize macrophage subsets and cytokine/chemokine signaling loops involved in CGD tissue hyperinflammation. Methods: Cytokine/chemokine production and surface marker expression were analyzed in inflamed tissue of four CGD patients and compared to cytokine/chemokine released by CGD macrophages upon priming to different macrophage subpopulations. Furthermore, the re-priming capacity of CGD pro-inflammatory M1 to M2a anti-inflammatory macrophages was evaluated. Results: In human CGD inflammatory tissue, IL-18 and IFN-γ were detected in significant quantity. Immunofluorescence analysis identified macrophages as one source of IL-18 in inflamed tissue. In vitro, CGD macrophages could be primed and re-primed into all inflammatory/anti-inflammatory macrophage subpopulations. IL-18 was also released by M1 CGD and control macrophages. Conclusion: CGD pro-inflammatory M1 macrophages remain M1 primed in vivo. As CGD M1 macrophages can be re-primed to anti-inflammatory M2a phenotype in vitro, macrophages are kept in M1 state in vivo by a persistent pro-inflammatory environment. Our results suggest a paracrine signaling loop between M1 macrophage derived IL-18 and non-macrophage derived IFN-γ maintaining macrophage pro-inflammatory activity in CGD tissue.


Assuntos
Doença Granulomatosa Crônica/imunologia , Interferon gama/imunologia , Interleucina-18/imunologia , Macrófagos/imunologia , Comunicação Parácrina/imunologia , Transdução de Sinais/imunologia , Adolescente , Adulto , Criança , Feminino , Doença Granulomatosa Crônica/genética , Doença Granulomatosa Crônica/patologia , Humanos , Lactente , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Interferon gama/genética , Interleucina-18/genética , Macrófagos/patologia , Masculino , Comunicação Parácrina/genética , Transdução de Sinais/genética
7.
J Clin Immunol ; 39(3): 298-308, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30838481

RESUMO

DOCK2 is a guanine-nucleotide-exchange factor for Rac proteins. Activated Rac serves various cellular functions including the reorganization of the actin cytoskeleton in lymphocytes and neutrophils and production of reactive oxygen species in neutrophils. Since 2015, six unrelated patients with combined immunodeficiency and early-onset severe viral infections caused by bi-allelic loss-of-function mutations in DOCK2 have been described. Until now, the function of phagocytes, specifically neutrophils, has not been assessed in human DOCK2 deficiency. Here, we describe a new kindred with four affected siblings harboring a homozygous splice-site mutation (c.2704-2 A > C) in DOCK2. The mutation results in alternative splicing and a complete loss of DOCK2 protein expression. The patients presented with leaky severe combined immunodeficiency or Omenn syndrome. The novel mutation affects EBV-B cell migration and results in NK cell dysfunction similar to previous observations. Moreover, both cytoskeletal rearrangement and reactive oxygen species production are partially impaired in DOCK2-deficient neutrophils.


Assuntos
Linfócitos B/imunologia , Proteínas Ativadoras de GTPase/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Células Matadoras Naturais/imunologia , Neutrófilos/imunologia , Deleção de Sequência/genética , Imunodeficiência Combinada Severa/genética , Processamento Alternativo/genética , Humanos , Estresse Oxidativo , Linhagem
8.
Mol Ther Methods Clin Dev ; 13: 274-278, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-30859112

RESUMO

Chronic granulomatous disease (CGD) is a primary immunodeficiency caused by mutations of the phagocytic nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Autosomal recessive p47 phox -deficient CGD (p47 phox CGD) is the second most frequent form of the disease in western countries, and more than 94% of patients have a disease-causing dinucleotide deletion (ΔGT) in the neutrophil cytosolic factor 1 (NCF1) gene. The ΔGT mutation is most likely transferred onto the NCF1 from one of its two pseudogenes co-localized on the same chromosome. The presence of NCF1 pseudogenes in healthy individuals makes the genetic diagnostics of ΔGT p47 phox CGD challenging, as it requires the distinction between ΔGT in NCF1 and in the two pseudogenes. We have developed a diagnostic tool for the identification of p47 phox CGD based on PCR co-amplification of NCF1 and its pseudogenes, followed by band intensity quantification of restriction fragment length polymorphism products. The single-day, reliable p47 phox CGD diagnostics allow for robust discrimination of homozygous ΔGT p47phox CGD patients from heterozygous carriers and healthy individuals, as well as for monitoring gene therapy efficacy.

9.
Front Immunol ; 9: 543, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29599784

RESUMO

Activated phosphoinositide 3-kinase (PI3K) δ Syndrome (APDS), caused by autosomal dominant mutations in PIK3CD (APDS1) or PIK3R1 (APDS2), is a heterogeneous primary immunodeficiency. While initial cohort-descriptions summarized the spectrum of clinical and immunological manifestations, questions about long-term disease evolution and response to therapy remain. The prospective European Society for Immunodeficiencies (ESID)-APDS registry aims to characterize the disease course, identify outcome predictors, and evaluate treatment responses. So far, 77 patients have been recruited (51 APDS1, 26 APDS2). Analysis of disease evolution in the first 68 patients pinpoints the early occurrence of recurrent respiratory infections followed by chronic lymphoproliferation, gastrointestinal manifestations, and cytopenias. Although most manifestations occur by age 15, adult-onset and asymptomatic courses were documented. Bronchiectasis was observed in 24/40 APDS1 patients who received a CT-scan compared with 4/15 APDS2 patients. By age 20, half of the patients had received at least one immunosuppressant, but 2-3 lines of immunosuppressive therapy were not unusual before age 10. Response to rapamycin was rated by physician visual analog scale as good in 10, moderate in 9, and poor in 7. Lymphoproliferation showed the best response (8 complete, 11 partial, 6 no remission), while bowel inflammation (3 complete, 3 partial, 9 no remission) and cytopenia (3 complete, 2 partial, 9 no remission) responded less well. Hence, non-lymphoproliferative manifestations should be a key target for novel therapies. This report from the ESID-APDS registry provides comprehensive baseline documentation for a growing cohort that will be followed prospectively to establish prognostic factors and identify patients for treatment studies.


Assuntos
Síndromes de Imunodeficiência/tratamento farmacológico , Imunossupressores/uso terapêutico , Sistema de Registros , Sirolimo/uso terapêutico , Adolescente , Adulto , Criança , Pré-Escolar , Classe I de Fosfatidilinositol 3-Quinases , Europa (Continente) , Humanos , Pessoa de Meia-Idade , Doenças da Imunodeficiência Primária , Sociedades Médicas , Adulto Jovem
10.
Nat Commun ; 9(1): 1239, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29588478

RESUMO

Ikaros family zinc finger 1 (IKZF1) is a haematopoietic transcription factor required for mammalian B-cell development. IKZF1 deficiency also reduces plasmacytoid dendritic cell (pDC) numbers in mice, but its effects on human DC development are unknown. Here we show that heterozygous mutation of IKZF1 in human decreases pDC numbers and expands conventional DC1 (cDC1). Lenalidomide, a drug that induces proteosomal degradation of IKZF1, also decreases pDC numbers in vivo, and reduces the ratio of pDC/cDC1 differentiated from progenitor cells in vitro in a dose-dependent manner. In addition, non-classical monocytes are reduced by IKZF1 deficiency in vivo. DC and monocytes from patients with IKZF1 deficiency or lenalidomide-treated cultures secrete less IFN-α, TNF and IL-12. These results indicate that human DC development and function are regulated by IKZF1, providing further insights into the consequences of IKZF1 mutation on immune function and the mechanism of immunomodulation by lenalidomide.


Assuntos
Células Dendríticas/fisiologia , Fator de Transcrição Ikaros/fisiologia , Haploinsuficiência , Hematopoese , Humanos , Interferon-alfa/metabolismo , Interleucina-12/metabolismo , Lenalidomida
11.
BMC Infect Dis ; 18(1): 33, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29325543

RESUMO

BACKGROUND: We report a rare case of Mammalian orthoreovirus (MRV) infection in a child with a primary immunodeficiency (PID). Infections with Mammalian orthoreovirus are very rare and probably of zoonotic origin. Only a few cases have been described so far, including one with similar pathogenesis as in our case. CASE PRESENTATION: The patient, age 11, presented with flu-like symptoms and persistent severe diarrhea. Enterovirus has been detected over several months, however, exact typing of a positive cell culture remained inconclusive. Unbiased metagenomic sequencing then detected MRV in stool samples from several time points. The sequencing approach further revealed co-infection with a recombinant Coxsackievirus and Adenovirus. MRV-specific antibodies detected by immunofluorescence proved that the patient seroconverted. CONCLUSION: This case highlights the potential of unbiased metagenomic sequencing in supplementing routine diagnostic methods, especially in situations of chronic infection with multiple viruses as seen here in an immunocompromised host. The origin, transmission routes and implications of MRV infection in humans merit further investigation.


Assuntos
Infecções por Adenoviridae/virologia , Infecções por Coxsackievirus/virologia , Síndromes de Imunodeficiência/complicações , Metagenômica/métodos , Infecções por Reoviridae/virologia , Infecções por Adenoviridae/etiologia , Criança , Coinfecção , Infecções por Coxsackievirus/etiologia , Diarreia/virologia , Enterovirus/genética , Enterovirus/patogenicidade , Infecções por Enterovirus/virologia , Feminino , Humanos , Síndromes de Imunodeficiência/virologia , Orthoreovirus de Mamíferos/genética , Orthoreovirus de Mamíferos/patogenicidade , Infecções por Reoviridae/etiologia
12.
Matters (Zur) ; 20182018.
Artigo em Inglês | MEDLINE | ID: mdl-31008103

RESUMO

A recent gamma-retroviral clinical Chronic Granulomatous Disease (CGD) gene therapy (GT) trial achieved proof-of-concept but was accompanied by activation of oncogenes and transgene silencing. The ubiquitous chromatin opening element (UCOE) comprises the sequences of two divergently oriented house-keeping gene promoters and is known to have anti-silencing properties. In a screen we identified two novel UCOE constructs that prevent adjacent promoter methylation in P19 cells. Experiments were continued with the shorter UCOE constructs in induced pluripotent stem cells (iPSC) derived from a p47phox-deficient CGD patient. The iPSC line was transduced with the lentiviral GT vectors expressing P47 under the constitutively active SFFV promoter with UCOE element (UCOE_SF) and without UCOE element (SF) adjacent to the SFFV promoter. The iPSC were expanded before propagation towards neutrophils. 20 days after transduction the UCOE_SF vector was protected from methylation in iPSC as previously shown in P19 cells, whereas the SF vector was heavily methylated in iPSC. The UCOE_SF vector maintained stable transgene expression in iPSC, macrophages and neutrophils, whereas the SF vector was strongly silenced. The UCOE_SF vector stably restored ROS production in neutrophils, whereas for the SF vector the count of ROS producing cells was marginal. To conclude, we have shown that the prevention of transgene silencing by UCOE is functionally and mechanistically preserved upon terminal neutrophil differentiation.

13.
Sci Rep ; 7: 44187, 2017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28287132

RESUMO

Development of gene therapy vectors requires cellular models reflecting the genetic background of a disease thus allowing for robust preclinical vector testing. For human p47phox-deficient chronic granulomatous disease (CGD) vector testing we generated a cellular model using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 to introduce a GT-dinucleotide deletion (ΔGT) mutation in p47phox encoding NCF1 gene in the human acute myeloid leukemia PLB-985 cell line. CGD is a group of hereditary immunodeficiencies characterized by impaired respiratory burst activity in phagocytes due to a defective phagocytic nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. In Western countries autosomal-recessive p47phox-subunit deficiency represents the second largest CGD patient cohort with unique genetics, as the vast majority of p47phox CGD patients carries ΔGT deletion in exon two of the NCF1 gene. The established PLB-985 NCF1 ΔGT cell line reflects the most frequent form of p47phox-deficient CGD genetically and functionally. It can be differentiated to granulocytes efficiently, what creates an attractive alternative to currently used iPSC models for rapid testing of novel gene therapy approaches.


Assuntos
Sistemas CRISPR-Cas , Terapia Genética/métodos , Vetores Genéticos , Doença Granulomatosa Crônica , Sequência de Bases , Doença Granulomatosa Crônica/genética , Doença Granulomatosa Crônica/metabolismo , Doença Granulomatosa Crônica/patologia , Doença Granulomatosa Crônica/terapia , Células HL-60 , Humanos , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Deleção de Sequência
14.
J Allergy Clin Immunol ; 139(1): 212-219.e3, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27458052

RESUMO

BACKGROUND: Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymatic disorder of red blood cells in human subjects, causing hemolytic anemia linked to impaired nicotinamide adenine dinucleotide phosphate (NADPH) production and imbalanced redox homeostasis in erythrocytes. Because G6PD is expressed by a variety of hematologic and nonhematologic cells, a broader clinical phenotype could be postulated in G6PD-deficient patients. We describe 3 brothers with severe G6PD deficiency and susceptibility to bacterial infection. OBJECTIVE: We sought to study the molecular pathophysiology leading to susceptibility to infection in 3 siblings with severe G6PD deficiency. METHODS: Blood samples of 3 patients with severe G6PD deficiency were analyzed for G6PD enzyme activity, cellular oxidized nicotinamide adenine dinucleotide phosphate/NADPH levels, phagocytic reactive oxygen species production, neutrophil extracellular trap (NET) formation, and neutrophil elastase translocation. RESULTS: In these 3 brothers strongly reduced NADPH oxidase function was found in granulocytes, leading to impaired NET formation. Defective NET formation has thus far been only observed in patients with the NADPH oxidase deficiency chronic granulomatous disease, who require antibiotic and antimycotic prophylaxis to prevent life-threatening bacterial and fungal infections. CONCLUSION: Because severe G6PD deficiency can be a phenocopy of chronic granulomatous disease with regard to the cellular and clinical phenotype, careful evaluation of neutrophil function seems mandatory in these patients to decide on appropriate anti-infective preventive measures. Determining the level of G6PD enzyme activity should be followed by analysis of reactive oxygen species production and NET formation to decide on required antibiotic and antimycotic prophylaxis.


Assuntos
Suscetibilidade a Doenças , Armadilhas Extracelulares/metabolismo , Deficiência de Glucosefosfato Desidrogenase , Infecções Bacterianas , Criança , Eritrócitos/metabolismo , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Deficiência de Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/metabolismo , Granulócitos/metabolismo , Humanos , Lactente , Elastase de Leucócito/metabolismo , Masculino , NADP/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
J Cereb Blood Flow Metab ; 37(8): 2833-2847, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27789786

RESUMO

Near-infrared fluorescence (NIRF) imaging enables non-invasive monitoring of molecular and cellular processes in live animals. Here we demonstrate the suitability of NIRF imaging to investigate the neutrophil response in the brain after transient middle cerebral artery occlusion (tMCAO). We established procedures for ex vivo fluorescent labelling of neutrophils without affecting their activation status. Adoptive transfer of labelled neutrophils in C57BL/6 mice before surgery resulted in higher fluorescence intensities over the ischaemic hemisphere in tMCAO mice with NIRF imaging when compared with controls, corroborated by ex vivo detection of labelled neutrophils using fluorescence microscopy. NIRF imaging showed that neutrophils started to accumulate immediately after tMCAO, peaking at 18 h, and were still visible until 48 h after reperfusion. Our data revealed accumulation of neutrophils also in extracranial tissue, indicating damage in the external carotid artery territory in the tMCAO model. Antibody-mediated inhibition of α4-integrins did reduce fluorescence signals at 18 and 24, but not at 48 h after reperfusion, compared with control treatment animals. Antibody treatment reduced cerebral lesion volumes by 19%. In conclusion, the non-invasive nature of NIRF imaging allows studying the dynamics of neutrophil recruitment and its modulation by targeted interventions in the mouse brain after transient experimental cerebral ischaemia.


Assuntos
Encéfalo/diagnóstico por imagem , Artéria Carótida Externa/diagnóstico por imagem , Ataque Isquêmico Transitório/diagnóstico por imagem , Monitorização Fisiológica/métodos , Infiltração de Neutrófilos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Animais , Encéfalo/irrigação sanguínea , Encéfalo/imunologia , Artéria Carótida Externa/imunologia , Modelos Animais de Doenças , Ataque Isquêmico Transitório/imunologia , Masculino , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência
16.
Pediatr Allergy Immunol ; 28(2): 124-134, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27612320

RESUMO

Phagocytic neutrophil granulocytes are among the first immune cells active at sites of infection, forming an important first-line defense against invading microorganisms. Congenital immune defects concerning these phagocytes may be due to reduced neutrophil numbers or function. Management of affected patients depends on the type and severity of disease. Here, we provide an overview of causes and treatment of diseases associated with congenital neutropenia, as well as defects of the phagocytic respiratory burst.


Assuntos
Doença Granulomatosa Crônica/imunologia , Síndromes de Imunodeficiência/imunologia , Neutropenia/congênito , Neutrófilos/imunologia , Fagocitose , Verrugas/imunologia , Animais , Antibioticoprofilaxia , Diferenciação Celular , Síndrome Congênita de Insuficiência da Medula Óssea , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Doença Granulomatosa Crônica/terapia , Transplante de Células-Tronco Hematopoéticas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunidade Inata , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/terapia , Mielopoese/genética , Neutropenia/genética , Neutropenia/imunologia , Neutropenia/terapia , Fagocitose/genética , Doenças da Imunodeficiência Primária , Explosão Respiratória/genética , Verrugas/genética , Verrugas/terapia
17.
J Allergy Clin Immunol ; 138(1): 210-218.e9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27221134

RESUMO

BACKGROUND: Activated phosphoinositide 3-kinase δ syndrome (APDS) 2 (p110δ-activating mutations causing senescent T cells, lymphadenopathy, and immunodeficiency [PASLI]-R1), a recently described primary immunodeficiency, results from autosomal dominant mutations in PIK3R1, the gene encoding the regulatory subunit (p85α, p55α, and p50α) of class IA phosphoinositide 3-kinases. OBJECTIVES: We sought to review the clinical, immunologic, and histopathologic phenotypes of APDS2 in a genetically defined international patient cohort. METHODS: The medical and biological records of 36 patients with genetically diagnosed APDS2 were collected and reviewed. RESULTS: Mutations within splice acceptor and donor sites of exon 11 of the PIK3R1 gene lead to APDS2. Recurrent upper respiratory tract infections (100%), pneumonitis (71%), and chronic lymphoproliferation (89%, including adenopathy [75%], splenomegaly [43%], and upper respiratory tract lymphoid hyperplasia [48%]) were the most common features. Growth retardation was frequently noticed (45%). Other complications were mild neurodevelopmental delay (31%); malignant diseases (28%), most of them being B-cell lymphomas; autoimmunity (17%); bronchiectasis (18%); and chronic diarrhea (24%). Decreased serum IgA and IgG levels (87%), increased IgM levels (58%), B-cell lymphopenia (88%) associated with an increased frequency of transitional B cells (93%), and decreased numbers of naive CD4 and naive CD8 cells but increased numbers of CD8 effector/memory T cells were predominant immunologic features. The majority of patients (89%) received immunoglobulin replacement; 3 patients were treated with rituximab, and 6 were treated with rapamycin initiated after diagnosis of APDS2. Five patients died from APDS2-related complications. CONCLUSION: APDS2 is a combined immunodeficiency with a variable clinical phenotype. Complications are frequent, such as severe bacterial and viral infections, lymphoproliferation, and lymphoma similar to APDS1/PASLI-CD. Immunoglobulin replacement therapy, rapamycin, and, likely in the near future, selective phosphoinositide 3-kinase δ inhibitors are possible treatment options.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/genética , Síndromes de Imunodeficiência/diagnóstico , Síndromes de Imunodeficiência/etiologia , Fenótipo , Adolescente , Adulto , Alelos , Biópsia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Frequência do Gene , Genótipo , Humanos , Síndromes de Imunodeficiência/mortalidade , Masculino , Pessoa de Meia-Idade , Mutação , Sítios de Splice de RNA , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Adulto Jovem
18.
Blood ; 127(25): 3154-64, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27114460

RESUMO

Since their discovery in patients with autosomal dominant (AD) chronic mucocutaneous candidiasis (CMC) in 2011, heterozygous STAT1 gain-of-function (GOF) mutations have increasingly been identified worldwide. The clinical spectrum associated with them needed to be delineated. We enrolled 274 patients from 167 kindreds originating from 40 countries from 5 continents. Demographic data, clinical features, immunological parameters, treatment, and outcome were recorded. The median age of the 274 patients was 22 years (range, 1-71 years); 98% of them had CMC, with a median age at onset of 1 year (range, 0-24 years). Patients often displayed bacterial (74%) infections, mostly because of Staphylococcus aureus (36%), including the respiratory tract and the skin in 47% and 28% of patients, respectively, and viral (38%) infections, mostly because of Herpesviridae (83%) and affecting the skin in 32% of patients. Invasive fungal infections (10%), mostly caused by Candida spp. (29%), and mycobacterial disease (6%) caused by Mycobacterium tuberculosis, environmental mycobacteria, or Bacille Calmette-Guérin vaccines were less common. Many patients had autoimmune manifestations (37%), including hypothyroidism (22%), type 1 diabetes (4%), blood cytopenia (4%), and systemic lupus erythematosus (2%). Invasive infections (25%), cerebral aneurysms (6%), and cancers (6%) were the strongest predictors of poor outcome. CMC persisted in 39% of the 202 patients receiving prolonged antifungal treatment. Circulating interleukin-17A-producing T-cell count was low for most (82%) but not all of the patients tested. STAT1 GOF mutations underlie AD CMC, as well as an unexpectedly wide range of other clinical features, including not only a variety of infectious and autoimmune diseases, but also cerebral aneurysms and carcinomas that confer a poor prognosis.


Assuntos
Candidíase Mucocutânea Crônica/genética , Estudos de Associação Genética , Mutação , Fator de Transcrição STAT1/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Predisposição Genética para Doença , Heterozigoto , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Fenótipo , Adulto Jovem
19.
J Allergy Clin Immunol ; 138(1): 219-228.e9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26853280

RESUMO

BACKGROUND: Defects in phagocytic nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) function cause chronic granulomatous disease (CGD), a primary immunodeficiency characterized by dysfunctional microbicidal activity and chronic inflammation. OBJECTIVE: We sought to study the effect of chronic inflammation on the hematopoietic compartment in patients and mice with X-linked chronic granulomatous disease (X-CGD). METHODS: We used immunostaining and functional analyses to study the hematopoietic compartment in patients with CGD. RESULTS: An analysis of bone marrow cells from patients and mice with X-CGD revealed a dysregulated hematopoiesis characterized by increased numbers of hematopoietic progenitor cells (HPCs) at the expense of repopulating hematopoietic stem cells (HSCs). In patients with X-CGD, there was a clear reduction in the proportion of HSCs in bone marrow and peripheral blood, and they were also more rapidly exhausted after in vitro culture. In mice with X-CGD, increased cycling of HSCs, expansion of HPCs, and impaired long-term engraftment capacity were found to be associated with high concentrations of proinflammatory cytokines, including IL-1ß. Treatment of wild-type mice with IL-1ß induced enhanced cell-cycle entry of HSCs, expansion of HPCs, and defects in long-term engraftment, mimicking the effects observed in mice with X-CGD. Inhibition of cytokine signaling in mice with X-CGD reduced HPC numbers but had only minor effects on the repopulating ability of HSCs. CONCLUSIONS: Persistent chronic inflammation in patients with CGD is associated with hematopoietic proliferative stress, leading to a decrease in the functional activity of HSCs. Our observations have clinical implications for the development of successful autologous cell therapy approaches.


Assuntos
Doença Granulomatosa Crônica/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Adolescente , Adulto , Animais , Biomarcadores , Estudos de Casos e Controles , Contagem de Células , Diferenciação Celular , Criança , Pré-Escolar , Ensaio de Unidades Formadoras de Colônias , Citocinas/metabolismo , Citocinas/farmacologia , Modelos Animais de Doenças , Sobrevivência de Enxerto , Doença Granulomatosa Crônica/etiologia , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Fenótipo , Transdução de Sinais , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...